Manual

on Miyawaki Plantation

ICFRE - Tropical Forest Research Institute Indian Council of Forestry Research \& Education
(An Autonomous Body of Ministry of Environment, Forests and Climate Change, Government of India) https://tfri.icfre.gov.in/

Patron

A. S. Rawat, IFS
Director General

EDITORS

Rathod DigvijaysinhUmedsinh
Neelu Singh
Nitin Kulkarni

Technical Support

Nikita Rai (Sr. Technician)
L.R. Thakur (Steno. GR-1)

Jiwan Lal (JPF)
© ICFRE- Tropical Forest Research Institute, Jabalpur - 2023

Published by

ICFRE-Tropical Forest Research Institute, Jabalpur - 482021

Citation

ICFRE-TFRI, 2023. A Manual for Miyawaki Plantation, TFRI/Tech.
Bulletin/04/2023/41,ICFRE- Tropical Forest Research Institute, Jabalpur, India.

Processed and Realization

G.S. Printers \& Book Binders

Street No. 7, Sadar, Jabalpur, Mob. 9826307404

Preface

Living in harmony with nature is essential in this rapidly expanding era of urbanisation. The preservation of the environment shouldn't be sacrificed for economic growth. Efforts should be made in nature-friendly ways to protect the environment.

The major environmental challenges faced by urban areas are air, water and soil pollution and the large volume of garbage production, including hazardous waste. The metropolitan areas are stretching the limits of their ability to support human existence and are suffering from serious environmental degradation.

Tree plantations with the Miyawaki Plantation Method, offer multiple benefits such as conservation of species, reducing the time of forest establishment and development, high plant diversities, augmenting the avian population through meeting basic needs for food and shelter, acting as a big sink for carbon storage, and enhancing the monetary as well as scenic beauty values of the landscape. To generate green employment for local people with its tangible and intangible benefits, it creates a positive impact on human health and the environment in densely populated urban societies.

Keeping these facts in mind, it is essential to educate and create awareness about this method with easily understandable knowledge source.

I hope that the enthusiastic tree planters, students, researchers, forest departments, NGOs, and forestry professionals would find the publication to be a convenient source of information on the Miyawaki Plantation Technique.

COMPILED BY

Rathod Digvijaysinh Umedsinh

Smt. Neelu Singh
Dr.Nitin Kulkarni

CONTRIBUTORS/NODAL OFFICERS

Dr. A. Muthukumar

Shri Sanjeev Kumar

Shri Alok Yadav

Ms. Vijaya Ratre
Shri Kingshuk Modak

Dr. Pravin Rawat

Dr. Ruby Patel

ICFRE- Tropical Forest Research Institute, Jabalpur (M.P.)
ICFRE- Tropical Forest Research Institute, Jabalpur (M.P.)
ICFRE- Tropical Forest Research Institute, Jabalpur (M.P.)

ICFRE- Institute of Wood Science and Technology, Bengaluru

ICFRE - Institute of Forest Productivity, Ranchi

ICFRE-Forest Research Centre for Eco-Rehabilitation, Prayagraj

ICFRE- Forest Research Institute, Dehradun ICFRE-Rain Forest Research Institute, Jorhat ICFRE- Himalayan Forest Research Institute, Shimla ICFRE- Institute of Forest Biodiversity, Hyderabad

Contents

Chapter 1 Introduction 1
Chapter 2 Method of site preparation for establishment of plantation 5
Chapter 3 Selection of species for Miyawaki Plantation 16
Chapter 4 Model Plantations of Miyawaki Technique in the country 70
4.1 Miyawaki Plantation established by ICFRE Institutes- Institute of Forest Productivity (IFP), Ranchi ICFRE - IFP, Ranchi 70
4.2. Miyawaki Plantation established in North Eastern States of India
ICFRE - RFRI, Jorhat75
4.3. Miyawaki Plantation established in south Indian states 77
4.3.1. Bengaluru ICFRE- IWST, Bangalore77
4.3.2. Mumbai ICFRE -TFRI, Jabalpur 80
References 85

Chapter 1

Introduction

Plantation of forest tree species is being promoted continuously in our country through various government schemes, organizations and state forest departments. The National Forest Policy (1988) aims at bringing 33% of the geographic area under forest and tree cover. The present total forest and tree cover of the country is $8,09,537 \mathrm{sq} \mathrm{km}$, which is 24.62% of the geographical area of the country (FSI, 2021). As the population is increasing rapidly, there is an urgent need for sound planning and sustainable management to prevent over-use and degradation of India's forest resources.

In India, out of a total population of 1210.2 million as of March 1, 2011, about 377.1 million people live in urban areas. Over the past decade, there has been a net increase of 91.0 million people in urban areas (MoHUF, 2021). The proportion of people living in cities within the total population of the country is 31.6%. To serve a large proportion of the country's population with a healthy environment, fresh air, water, a stress-free life, etc., there is a need for sound management of natural resources and also a need to increase the tree cover of the country. Keeping in view the necessity to increase forest cover, urban greening and achieve the goal of sustainable development, a plantation technique proposed by Dr. Miyawaki for increasing green cover by developing multitier system comprising trees (Upper storey), shrubs (Middle storey) and herbs (Lower storey). The selection of trees shrubs and herbs is based on the availability of species in particular region are that holds native plant diversity. It provides a beautiful landscape element; a buffer against extreme heat, polluted air, flooding and drought; an educational opportunity; and part of an antidote to the global climate crisis.

Dr. Akira Miyawaki was born in Okayama, Japan, on January 29, 1928. In 1952, he
 received his bachelor's degree in biology from Hiroshima University with a specialisation in weed ecology. He served as a visiting researcher at the Federal Institute for Vegetation Mapping in West Germany from 1958 to 1960. Hiroshima University conferred on him the degree of Doctor of Science in 1961. Following that, he continued a professional career in teaching and research. Various prestigious honours have also been bestowed upon him, including the Asahi Shimbun Prize (1990), the Reinhold Tüxen Prize, Germany (1995), the Order of the Sacred Treasure, Gold and Silver Star, Japanese Government (2000), the Blue Planet Prize (2006), and others.

The Akira Miyawaki Plantation Techniques, i.e., reforestation of "Native Forest by native trees" is based on traditional Japanese "Chinju-No-Mori" and ecology, a new synthetic science that integrates biocoenoses and the environment. Dr. Akira Miyawaki developed the "Miyawaki Method" to repair and recreate forests using native species appropriate to the habitat based on intensive field assessment of local vegetation and ecological theories (Fig.1). In this method, main tree species and their companionspecies are chosen from the potential natural vegetation of the area,the seeds of selected species are collected, grown in pots until acomplete root system develops collected, mixed and planted closertogether by adopting the system of natural forests.

Fig. 1 : Flow Chart for the restoration and creation of native forest
(Source: Miyawaki, 1999)

Trees play an associate's degree critical position in the elimination of carbon dioxide. They dispose of (sequester) carbon from the environment via photosynthesis and convert it to oxygen. As bushes grow, they dispose of CO_{2} from the environment during the photosynthesis (Kiran et al., 2011). Each species has different capacity to sequester carbon. Tree canopies offer a cooling impact on the microclimate immediately with the help of shading the floor and in a roundabout way via transpiration. Therefore, selection of suitable tree species having high carbon sequestration potential is of prime importance.

Miyawaki plantation techniques offer the benefits of a mixture of diverse types of tree species in plantations. This method of plantation allows creation of a mature natural forest in a comparatively small amount of time, is based on a careful selection of the plant species that are best suited to local environment. This plantation technique will provide multiple benefits in a rapidly expanding urban area. Miyawaki method is to create a permanent canopy of climax tree species directly, without going through successional stages.

The Miyawaki Method is also unique because it can be applied to area of any size and develops mini-forest with tangible and intangible benefits for urban and rural population wis a wis country as well.

Chapter 2 Method of site preparation for establishment of plantation

- Selection of site: The site selection is an important step in the plantation programme, which leads to the establishment of successful forest tree plantations. The suitable selection of site helps in taking the following decisions :
I. To select species for site specific planting.
II. To determine required ground preparations.
III. To plan internal layouts of roads, rides, firebreaks and location of water points.

Pre-planting of survey			
S. No.	Type	Desired information	Management value
1	Terrain	Elevation (m)	Overcome the limits of economical harvesting,reduce the risk of erosion, limit of mechanization. Selection of species, ground preparation etc., ground configuration may affect location of firebreaks, nursery, roads etc.
		Aspect	
		Slope	
		Steepness	
		Ground configuration	
		Rockiness	
2	Drainage	Risk of flooding	This is purely a feature of the terrain, but it plays a crucial role in locating nurseries, fire protection dams, watering sites, and extraction systems, as well as in creating bridges and culverter sizes.
		Periods when beds are dry	
		Distance from nearest natural waterbodies	
3	Soils	Soil types	The selection of tree and shrub species, ground preparation work, fertiliser requirements, need for erosion control, the potential supply of materials for building roads, etc.
		Soil chemical and physical status	
		Erodability	
		Underlying geology and outcrops	

4	Vegetation cover	Vegetation type	Utilising current vegetation as an index of the fertility of the site, identifying regions that need to be preserved, and the necessity of clearing vegetation
		Density	
		Species composition	
		Area or species of special ecological values	
5	Communication and services	Location of public roads and right of way	Assist with infrastructure development, identify unusable land (below) and decide where rights must be preserved.
		Telephone and electricity line	
		Other easement	
6	Special factors which may preclude planting	Area of special scientific interest	Land withsignificant biological, ecological,geological, cultural andhistorical values
		Areas or vegetation of religious or cultural significance	Local tradition will determine this. Land or existing trees may have spiritual significance or serve as a food source.
		Area of landscape significance	Land should be excluded or the boundary should be changed to accommodate the landform.
		Easements-power line, telephones etc,	Tree planting is valuable because of the limitations on tree height growth.
		Rights of access, grazing , hunting etc.	In order to avoid conflicts of interest and antipathy, it is crucial that they be clearly acknowledged and that local residents be included in the planning stage.

Source: Evans, J. (1992).

Contact to Expert during/before initiating the planting process	
Subject Expert	Management Role
Silviculturist/ Forestry Expert	Help in species combination selection according to associate species and site conditions, planning and management of forests
Soil Scientist	Soil health analysis and nutrient management requirement
Ecologist	To study the impact on environment and site

- Soil condition: Soil fulfills three essential requirements for tree growth: supply of moisture, nutrients and mechanical support.Good soil fertility, physical condition and rootable depth are the primary consideration.
- Cleaning of site: Removal of weed, grasses, and stone from the site.
- Layout of site: Design of layout according to availability of area and site condition.General availability of area of land for plantation purpose particularly in the urban area ie., 100 sq. m to 1000 sq. m size plot. Based on previous studies, following spacing for plantation may be adopted:

For successful establishment, minimum spacing $60 \mathrm{~cm} \times 60 \mathrm{~cm}$ may be adopted for good growth of plantation, to avoid/reduce mortality with increasing age of plantation due to competition among the plants for nutrients and space in long term.
Considering the canopy growth, height of trees and root spread of main species and associate species will be appropriate while deciding the spacing.

- Diagram of layout :

Rectangular planting pattern

32 Ft (09.7536 Mtr .)
Note:- Space between two dots (2 FL)
(Source: Mission Miyawaki Group)

Proposed plan for Miyawaki Plantations

Design of Layout: This layout is proposed to provide optimum light and reduce root competition for nutrients among the different storey species by arranging tree species in a systematic manner according to light requirements or shade tolerance levels. The proportion of top storey, middle storey and lower storey density may vary according to objectives, site soil, and climatic conditions.

Details of Layout	
	Top storey (TS)
	Middle Storey (MS)
	$0.60 \mathrm{~m} \times 0.60 \mathrm{~m}$
Spacing	$10 \times 10 \mathrm{~m}$
Plot Size	$100 \mathrm{~m}^{2}$
Total area	278
Total Number of Plants	TS: 30%, MS: 50%, LS: 20% (the $\%$ of TS, LS \& MS may be changed as per the site conditions)
Ratio	

- Marking and staking: The following items are required:

Rope

Lime Powder

Bamboo sticks

Field photographs:

Marking

- Preparation of Pits

(Photographs Source: Mission Miyawaki Group)
- Addition of fertilizer
- Organic: Farmyard manure, Oil cakes (Groundnut cake, Coconut cake, Castor cake, Neem cake, Mahua cake).
- Inorganic: Urea, DAP (Di-ammonium Phosphate)
- Selection of plants: Select the one year old seedling, which is free from disease and healthy root and shoot development.
- Planting of trees
- Steps of planting

(Photographs Source: Mission Miyawaki Group)
- Irrigation: Proper irrigation with good quality of water is required for plant establishment, growth and development.

View of Irrigation Method:

Flood irrigation

Drip Irrigation

- Fencing of site: The choice of fencing depends on the type of terrain, soil depth and the kind of soil and degree of protection required to avoid grazing and browsing animals.

Type of fence:

Barbed wire fencing with cemented poles

Fencing with plastic wire mesh with iron pole

Fencing with bamboo poles + agro net + plastic wire mesh

Fencing with bamboo

- Pruning operation: Pruning operation is necessary in $2^{\text {nd }}$ and $3^{\text {rd }}$ years in the plantation to improve the growth and development of plants. Also help in reduction light competition and promote straight growth of plants.

Pre-planting / Post Planting process

- Registered the established plantation with details of area, number of plants, and list of species planted, at least 2 photographs with the local forest department or government-authorised body.

Chapter 3 Selection of species for Miyawaki Plantation

The selection of tree species in the Miyawaki Plantation plays an important role. The tree species must be chosen from the forest communities of the region in order to restore multi-stratal natural or quasi-natural forests.

The growth and development of individual trees in later stages are directly related to the canopy development of planted species. The canopy of trees controls many factors such as light penetration, moisture, humidity, temperature, rainfall, etc. that directly affect the growth of tree species in different canopy layers.

If the main tree species are wrongly chosen, it will be difficult to regenerate native forests successfully. In the plant communities, if the top is authentic, the followers are also real, just like in human society.

1. Methods species selection:

Compare GSSC with LCU \& other part of world vegetation map

- Phytosociological survey:

For the proper choice of species, we first make a list of species available in the native area through field vegetation survey including temple or religious places, old house forests, natural forests established on slopes and substitute vegetation changed by various human impacts. This method is called releves, which are equivalent to a census of green environments/phytosociological survey (Miyawaki, 1999).

- Local community units (LCU):

By comparing releves and prepare grouping of similar species combinations.

- Grouping of Similar Species Combination (GSSC):

For the selection of species combination identify high-fidelity species for particular communities.Selected species will be known character species. Then compare phytosociological units widely from natural forests to secondary communities and decide "associations" basic unit of a plant community system.

2. Potential Natural Vegetation (PNV):

The Potential Natural Vegetation indicates the potential capacity of land, theoretically considered as sustainability potential of vegetation. To decide the PNV, assess natural vegetation and compare it with various secondary vegetation types from the factors of time and space. The amount of soil profile topography and land utilization should also be considered.

PNV is the "vegetation cover in equilibrium with climate that would exist at a given location non-impacted by human activities" (Hengl et al., 2018). "The concept of potential natural vegetation (PNV) was introduced by Faber (1937) and afterward promoted by Tuxen (1956). According to the definitions given by these authors, PNV is an imagined state of the vegetation that would exist without the influence of man. To put it briefly, PNV expresses the site conditions in terms of phytosociology (Fischer 2003). In this way, "PNV is a scientific construct reflecting the site conditions of a certain place or area (Fischer et al., 2013). Therefore, a forester needs to understand the interaction between species and site conditions before the species selection for the establishment of Miyawaki plantation according to this principle. The potential patterns give the ecological engineer an endpoint or a design goal to guide reconstruction" (Miyawaki, 1993). From a forester's point of view PNV is defined as a collection of small patches of forest where plants maintain a balance with climate factors for their development on a specific site in the absence of anthropogenic disturbance.

PNV maps are essential for each ecological study field and are significant as ecological diagnoses for restoration of green environment. It is recorded that it is possible to restore native green environments, multi-stratal forests, by choosing the main species from the potential natural vegetation of the area and planting them mixed and densely with as many companion species as possible.

Characteristic of Main species in NPV:

- Deep and straight -rooted
- Belongs to top canopy layer
- Minimum plant allelopathy effects on associated species
- Best suitable species for associated species

Field Survey Form:

S. No.	Top storey (Dominant trees)	Middle storey (Intermediate)	Lower storey (Suppressed)
1.			
2.			
3.			
4.			
5.			

- Top storey/Dominant trees: Trees which form the upper most leaf canopy and have their leading shoots free.
- Middle storey/Intermediate: Trees which do not form part of the upper most leaf canopy
- Lower storey/Suppressed: Trees which reach only about 0.50 to 0.63% of the height of predominant, with their leading shoot definitely over topped by their neighbours or at least shaded on all sides by them.

Based on forest type classification by Champion \& Seth (1968) and major three forest types in the states/UT as per forest cover percentage, a list of plant species for selection of tree/shrubs/herbs in different canopy layers (TS, MS \& LS) for different regions is givenbelow:

List of suggested tree/shrubs/herbs species according to different canopy layers existed in the top three forest types (based on area) in different states of India.			
$\begin{gathered} \text { SI. } \\ \text { NO. } \end{gathered}$	State \& Union territories	Forest types	Forest cover (\%)*
1.	Andhra Pradesh	5A/C3 Southern Dry Mixed Deciduous Forest Chirodi R. F., Andhra Pradesh- Top Storey: Terminalia tomentosa, Bauhinia racemosa, Acacia arabica, A. catechu, Boswellia serrata, Buchanania lanzan, Azadirachta indica, Ougeinia oojeinensis, Flacourtia indica. Middle Storey: Gymnosporia spinosa, Ziziphus mauritiana, Z. xylopyrus, Morinda tinctoria. Lower storey: Mimosa hamata, Terminalia tomentosa, Grewia hirsuta. Cuddalore Nallamalais, S. Kurnool Division, A.P.- Top Storey/ Middle Storey: Anogeissus latifolia, Cleistanthus collinus, Terminalia tomentosa, Pterocarpus marsupium, P. santalinus, Hardwickia binata, Tectona grandis. Middle Storey: Dendrocalamus strictus. S. Cuddapah Division, A. P Top Storey/ Middle Storey: Terminalia pallida, Shorea talura, S. tumbuggaia, Eugenia alternifolia, Mangifera indica, Albizia odoratissima Lower storey: Phoenix acaulis.	42.97
		5B/DS1 Dry Deciduous Scrub Mansurabad, Andhra Pradesh Acacia leucophloea, Bauhinia racemosa, Dalbergia paniculata, Wrightia tinctoria, Ziziphus xylopyrus, Cassia fistula, Randia, Annona spp.	31.58

		3B/C2 Southern Moist Mixed Deciduous Forest Top Storey: Pterocarpus marsupium, Salmalia malabarica, Terminalia bellirica, Anogeissus latifolia, Dalbergia latifolia, Terminalia tomentosa, Lannea coromandelica, Madhuca indica, Garuga pinnata. Middle Storey: Miliusa tomentosa, Polyalthia cerasoides, Lagerstroemia parviflora, Emblica officinalis, Xylia xylocarpa, Grewia tiliifolia, Schrebera swietenioides, Cleistanthus collinus, Diospyros montana, Flacourtia indica, Dendrocalamus strictus. Lowe Storey: Ziziphus oenopolia, Casearia graveolens, Helicteres isora, Desmodium gangeticum. Terminalia tomentosa predominating accompanied by Pterocarpus, Adina, Salmalia, Grewia.	5.20
2.	Arunachal Pradesh	8B/C1 East Himalayan Sub-Tropical Wet Hill Forest Top storey: Lithocarpus elegans, Quercus fenestrata, Quercus lamellosa, Quercus griffithii, Castanopsis spp., Schima, Cinnamomum, Saurauia spp., Litsea spp., Machilus, Syzygium, Cedrela toona, Phoebe lanceolata, Beilschmiedia, Cinnamomum cecicodaphne, Schima, Lauraceae (many spp.). Litsea spp., Magnolia spp., Alnus spp., Betula spp., Cinnamomum, Pinus wallichiana Middle/ Lower storey: Elaeagnus spp., Berberis wallichiana, Maesa indica, Strobilanthes spp., Zanthoxylum spp., Gaultheria spp., Rhododendron spp., Psychotria, Flacourtia, Symplocos, Crateva nurvala, Emblica. Middle storey: Quercus spp., Lithocarpus, Schima, Castanopsis spp., Betula alnoides, Acer oblongum, Engelhardia, Symplocos. Lower storey: Pittosporum spp., Myrsine, Debregeasia, Rubus.	24.35

		11B/C1 East Himalayan Wet Temperate Forest Top Storey : Magnolia, Manglietia, Michelia, Quercus, Acer, Prunus, Pyrus, Symingtonia (Bucklandia) populnea, Alnus nepalensis, Betula alnoides, Carpinus viminea, Alnus nepalensis, Betula alnoides, Carpinus viminea, Abies densa, Berberis spp., Pinus wallichiana, Schima, Litsea spp., etc. Middle Storey : Bamboo in the east. Lower storey: Evergreen shrubs	22.92
		14/C2 East Himalayan Sub-Alpine Birch/Fir Forest Top Storey : Abies densa, Juniperus wallichiana Middle Storey: Rhododendron wightii, Betula utilis, Rhododendron spp., Pyrus aucuparia, Salix wallichiana. Lower storey. Spiraea spp., Juniperus recurva, Cassiope fastigiata, Rhododendron lepidotum, Potentilla fruticosa, Polygonum spp.	13.46
3.	Assam	2B/C2 Cachar Semi-Evergreen Forest Cachar, Assam Top Storey/ Middle Storey: Artocarpus chaplasha, Dipterocarpus turbinatus, Palaquium polyanthum, Cynometra polyandra, Eugenia spp., Vitex peduncularis, Pterospermum acerifolium, Pterygota alata, Chukrasia velutina, Tetrameles nudiflora, Adina cordifolia, Protium serratum, Albizia procera, Premna bengalensis, Gmelina arborea, Salmalia insignis, Stereospermum personatum and many others. Middle Storey: Melocanna bambusoides. Lower Storey: Evergreen shrubs.	37.75
		3C/C3b East Himalayan Moist Mixed Deciduous Forest Top Storey: Lagerstroemia parviflora, Terminalia bellirica, Sterculia villosa, Salmalia malabarica, Schima wallichii. Middle Storey: Careya arborea, Bauhinia purpurea, Amoora spp.	17.92

		1B/C1 Assam Valley Tropical Wet Evergreen Forest (Dipterocarpus) Top Storey: Dipterocarpus macrocarpus, Shorea assamica, Mesua ferrea, Altingia excelsa, Dysoxylum procerum, Artocarpus chaplasha, Michelia spp., Stereospermum personatum, Canarium spp., Amoora wallichii. Middle Storey: Vatica lanceifolia, Eugenia spp., Garcinia cowa, Talauma spp., Myristica spp., Dendrocalamus hamiltonii, Bambusa pallida, Pseudostachyum polymorphum, Linistona jenkinsiana. Lower storey: Clerodendron, Ixora, Pinanga, Laportea spp.,	3.56
4.	Bihar	5B/C2 Northern Dry Mixed Deciduous Forest Singhbhum, Bihar (Cochlospermum-Euphorbia association) Top Storey \& Middle Storey: Lannea coromandelica, Gardenia latifolia, Cochlospermum religiosum, Sterculia urens, Chloroxylon swietenia, Buchanania lanzan, Aegle marmelos, Anogeissus latifolia, Morinda tinctoria, Canthium dicoccum, Emblica officinalis, Euphorbia nivulia, Protium serratum, Lagerstroemia parviflora, Erythrina suberosa, Stereospermum suaveolens, Ficus Lower Storey: Woodfordia fruticosa, Nyctanthes arbortristis, Petalidium barlerioides, Murraya paniculata, Sarcostemma acidum, Eranthemum purpurascens, Justicia spp., Rungia, Dicliptera spp., Butea superba, Olax scandens, Jasminum, Erycibe. Singhbhum, Bihar (Anogeissus-Mitragyna- Dendrocalamus-Daedalacanthusassociation) Top \& Middle storey: Anogeissus latifolia, Adina cordifolia, Mitragyna parvifolia, Hymenodictyon excelsum, Aegle marmelos, Chloroxylon swietenia, Schleichera oleosa, Lannea	30.70

		coromandelica, Schrebera swietenioides, Lagerstroemia parviflora, Bridelia retusa, and occasional Shorea, Cochlospermum, Sterculia, Boswellia, Buchanania, Ougeinia oojeinensis, Erythrina, Bauhinia malabarica, Madhuca, Diospyros montana, Stereospermum, Vitex peduncularis. Lower Storey: Petalidium barlerioides, Helicteres isora, Strobilanthes auriculatus, Symphorema polyandrum.	
		5B/C1c Dry Peninsular Sal Forest Singhbhum, Bihar (1) Shorea-Anogeissus-Woodfordia association Top \& Middle Storey: Shorea robusta, Anogeissus latifolia, Boswellia serrata, Cochlospermum religiosum, Dillenia aurea, Ziziphus xylopyrus, Gardenia gummifera. Lower Storey: Woodfordia fruticosa, Wendlandia tinctoria, Grewia hirsuta, Phoenix acaulis. (2) Shorea-Gardenia-Eulaliopsis association. Top \& Middle Storey: Shorea robusta, Buchanania lanzan, Eugenia caryophyllifolia, Gardenia gummifera, Madhuca indica, Diospyros tomentosa, Emblica officinalis. Cephalostachyum pergracile. Lower Storey: Wendlandia tinctoria, Phoenix acaulis.	21.13
		5B/C1a Dry Siwalik Sal Forest Top Storey: Shorea robusta, Anogeissus latifolia Middle Storey: Buchanania lanzan Lower Storey: Woodfordia fruticosa, Indigofera pulchella	5.14
5.	Chhattisgarh	5A/C3 Southern Dry Mixed Deciduous Forest Top \& Middle Storey: Terminalia tomentosa, Anogeissus latifolia, Mitragyna parvifolia, Schrebera swietenioides, Madhuca indica, Diospyros tomentosa, Buchanania lanzan, Lagerstroemia parviflora, Emblica officinalis, Cassia fistula, Aegle marmelos, Butea monosperma, Santalum album, Albizia	27.37

6.	Delhi	6B/C2 Ravine Thorn Forest Top \& Middle Storey: Acacia senegal, A. leucophloea, Prosopis spicigera, Salvadora oleoides Lower Storey: Capparis decidua, Ziziphus mauritiana, Z. nummularia, Calotropis procera.	45.37
		5B/C2 Northern Dry Mixed Deciduous Forest Top Storey: Acacia catechu, Anogeissus latifolia, Lannea coromandelica, Aegle marmelos, Feronia limonia, Ehretia laevis, Kydia calycina, Ougeinia oojeinensis, Mitragyna parvifolia, Flacourtia indica. Middle Storey: Mallotus philippensis, Nyctanthes arbortristis, Dendrocalamus strictus Lower Storey: Carissa opaca, Dodonaea viscosa, Woodfordia fruticosa, Adhatoda vasica.	21.73
7.	Goa	3B/C2 Southern Moist Mixed Deciduous Forest Top Storey: Adina cordifolia, Grewia tiliifolia, Madhuca indica, Dillenia pentagyna, Cinnamomum spp., Litsea spp., Olea dioica, Terminalia paniculata, Tectona grandis, Grewia tilifolia, Careya arborea. Middle Storey: Emblica officinalis, Xylia xylocarpa etc., Bambusa arundinacea, Dendrocalamus strictus. Lower Storey: Tabernaemontana spp., Ziziphus rugosa, Cyclea, Acacia concinna spp.,	42.55
		1A/C4 West Coast Tropical Evergreen Forest Top Storey: Dipterocarpus indicus, Poeciloneuron indicum, Mesua ferrea, Hopea parviflora, Dysoxylum malabaricum, Calophyllum elatum, Machilus macranthus, Palaquium ellipticum and many others. Middle Storey: Myristica spp., Euphoria longana, Unona pannosa, Humboldtia brunonis, Aglaia odoratissima, Hopea wightiana, Oxytenanthera spp.	22.40

		Lower Storey: Rubiaccae, Strobilanthes, Pinanga dichsoni, Arenga wightii, Pandanus, Calamus spp.	
		2A/C2 West Coast Semi-Evergreen Forest Top Storey: Terminalia paniculata, Diospyros spp., Lagerstroemia lanceolata, Holigarna arnottiana, Lophopetalum wightianum, Machilus macranthus, Cinnamoтum spp., Hopea parviflora, Artocarpus hirsutus. Middle Storey: Elaeocarpus serratus, Mallotus philippensis, Diospyros assimilis, Ixora arborea. Lower Storey: Webera, Strobilanthes spp., Ixora malabarica. Climbers and canes numerous	21.35
8.	Gujarat	5A/C3 Southern Dry Mixed Deciduous Forest Top Storey/ Middle Storey: Sterculia urens, Lannea coromandelica, Salmalia malabarica, Moringa oleifera. Lower Storey: Euphorbia tirucalli, Capparis decidua, Lawsonia inermis.	12.75
		5A/C1b Dry Teak Forest Top Storey: Tectona grandis, Boswellia serrata, Lannea coromandelica, Anogeissus latifolia, Diospyros tomentosa, Terminalia tomentosa, Butea monosperma, Hymenodictyon excelsum, Cochlospermum religiosum, Cassia fistula, Bauhinia racemosa, Bridelia retusa, Ougeinia oojeinensis, Dalbergia latifolia, Schrebera swietenioides. Middle Storey: Wrightia tinctoria, Flacourtia indica, Ziziphus xylopyrus, Dendrocalamus strictus. Lower Storey: Holarrhena antidysenterica, Nyctanthes arbor-tristis, Ziziphus nummularia.	11.77
		6B/C1 Desert Thorn Forest 1. Kutch, Saurashtra, Gujrat Top Storey: Acacia senegal, A. leucophloea, Cordia rothii, Azadirachta indica.	9.22

		Middle Storey \& Lower Storey: Euphorbia neriifolia, E. nivulia, Balanites aegyptiaca, Salvadora, Commiphora mukul, Capparis spp. Grewia tenax, G. villosa, Premna integrifolia. 2. Sasan, Saurashtra, Gujrat Acacia planifrons, A. arabica, A. catechu, Balanites aegyptica, Ziziphus spp.	
9.	Haryana	5B/C2 Northern Dry Mixed Deciduous Forest Top Storey: Acacia catechu, Anogeissus latifolia, Lannea coromandelica, Aegle marmelos, Feronia limonia, Ehretialaevis, Kydia calycina, Ougeinia oojeinensis, Mitragyna parvifolia, Flacourtia indica. Middle Storey: Mallotus philippensis, Nyctanthes arbortristis, Dendrocalamus strictus Lower Storey: Carissa opaca, Dodonaea viscosa, Woodfordia fruticosa, Adhatoda vasica.	30.20
		6B/C2 Ravine Thorn Forest Top Storey \& Middle Storey: Acacia senegal, A. leucophloea, Prosopis spicigera, Salvadora oleoides Lower Storey: Capparis decidua, Ziziphus mauritiana, Z. nummularia, Calotropis procera,	14.32
		6/1S1 Desert Dune Scrub Top Storey: Prosopis spicigera, Acacia arabica, Tamarix aphylla, Salvadora oleoides. Middle Storey/Lower Storey: Calotropis gigantea, C. procera, Ziziphus nummularia, Z. mauritiana, Calligonum polygonoides, Balanites aegyptiaca, Capparis decidua, Leptadenia pyrotechnica, Aerva javanica, Crotalaria burhia.	6.40
10.	Himachal Pradesh	12/C1d Western Mixed Coniferous Forest (Spruce, Blue Pine, Silver Fir) Top Storey: Picea spp., Cedrus deodara, Abies pindrow, Pinus wallichiana.	14.03

		Middle Storey: Quercus dilatata, Quercus incana, Quercus semecarpifolia, Acer acuminatum, A. caesium, A. pictum, Euonymus lacerus, Taxus baccata, Betula alnoides, Arundinaria falcata, Thamnocalamus spathiflorus. Lower Storey: Deutzia corymbosa, Ribes rubrum, Viburnum nervosum, Skimmia, Strobilanthes spp. Va. Fragaria, Viola, Valeriana, Pteridium, Adiantum venustum, Aspidium aculeatum.	
		15/C3 Alpine Pasture Agropyron longearistatum, A. semicostatum, Brachypodium sylvaticum, Bromus asper, B. japonicus, Dactylis spp., Danthonia spp., Festuca spp., Milium effusum, Oryzopsis, Phleum, Poa spp. etc.	13.96
		5B/C2 Northern Dry Mixed Deciduous Forest Top Storey: Acacia catechu, Anogeissus latifolia, Lannea coromandelica, Aegle marmelos, Feronia limonia, Ehretialaevis, Kydia calycina, Ougeinia oojeinensis, Mitragyna parvifolia, Flacourtia indica. Middle Storey: Mallotus philippensis, Nyctanthes arbortristis, Dendrocalamus strictus Lower Storey: Carissa opaca, Dodonaea viscosa, Woodfordia fruticosa, Adhatoda vasica.	12.70
11.	 Kashmir and Ladakh (combined)	12/C1d Western Mixed Coniferous Forest (Spruce, Blue Pine, Silver fir) Top Storey: Picea, Cedrus deodara, Abies pindrow, Pinus wallichiana. Middle Storey: Quercus dilatata, Quercus incana, Quercus semecarpifolia, Acer acuminatum, A. caesium, A. pictum, Euonymus lacerus, Taxus baccata, Betula alnoides, Arundinaria falcata, Thamnocalamus spathiflorus.	12.82

		Lower Storey: Deutzia corymbosa, Ribes rubrum, Viburnum nervosum, Skimmia, Strobilanthes spp. Va. Fragaria, Viola, Valeriana, Pteridium, Adiantum venustum, Aspidium aculeatum.	
		9/C1a Lower or Siwalik Chir Pine Forest Top Storey: Pinus roxburghii. Middle Storey: Terminalia chebula, Mallotus philippensis, Pyrus pashia, Syzygium cumini, Albizia chinensis, Emblica, Acacia catechu. Lower Storey: Carissa opaca, Dodonaea viscosa, Rubus ellipticus, Crataegus crenulata, Flacourtia, Myrsine africana, Woodfordia fruticosa, Colebrookia, Berberis, Indigofera pulchella, Murraya koenigii. NOTE- In moister sites, Quercus incana, Quercus glauca, Pyrus, Rhododendron etc.	10.86
		12/C1c Moist Deodar Forest (Cedrus) Top Storey: Cedrus deodara, Pinus wallichiana. Middle Storey: Quercus incana. Lower Storey: Rosa macrophylla, Berberis lycium, Lonicera angustifolia, Strobilanthes wallichii, Boenninghausenia spp., Deutzia staminea.	8.93
12.	Jharkhand	5B/C1c Dry Peninsular Sal Forest (1) Shorea-Anogeissus-Woodfordia association Top Storey \& Middle Storey: Shorea robusta, Anogeissus latifolia, Boswellia serrata, Cochlospermum religiosum, Dillenia aurea, Ziziphus xylopyrus, Gardenia gummifera. Lower Storey: Woodfordia fruticosa, Wendlandia tinctoria, Grewia hirsuta, Phoenix acaulis. (2) Shorea-Gardenia-Eulaliopsis association. Top \& Middle Storey: Shorea robusta, Buchanania lanzan, Eugenia caryophyllifolia, Gardenia gummifera, Madhuca	53.77

13.	Karnataka	1A/C4 West Coast Tropical Evergreen Forest Top Storey: Dipterocarpus indicus, Poeciloneuron indicum, Mesua ferrea, Hopea parviflora, Dysoxylum malabaricum, Calophyllum elatum, Machilus macranthus, Palaquium ellipticum and many others. Middle Storey: Myristica spp., Euphoria longana, Unona pannosa, Humboldtia brunonis, Aglaia odoratissima, Hopea wightiana, Oxytenanthera spp. Lower Storey: Rubiaccae, Strobilanthes, Pinanga dichsoni, Arenga wightii, Pandanus.	12.65
		3B/C2 Southern Moist Mixed Deciduous Forest Top Storey: Adina cordifolia, Grewia tiliifolia, Madhuca indica, Dillenia pentagyna, Cinnamomum, Litsea, Olea dioica. Middle Storey: Emblica officinalis, Xylia xylocarpa, Bambusa arundinacea, Dendrocalamus strictus. Lower Storey: Tabernaemontana, Ziziphus rugosa, Cyclea, Acacia concinna	11.70
		2A/C2 West Coast Semi-Evergreen Forest Top Storey: Terminalia paniculata, Diospyros spp., Lagerstroemia lanceolata, Holigarna arnottiana, Lophopetalum wightianum, Machilus macranthus, Cinnamoтит spp., Hopea parviflora, Artocarpus hirsutus. Middle Storey: Elaeocarpus serratus, Mallotus philippensis, Diospyros assimilis, Ixora arborea. Lower Storey: Webera, Strobilanthes spp., Ixora malabarica.	10.52
14.	Kerala	1A/C4 West Coast Tropical Evergreen Forest 1. High Level Evergreen Forests of Wynaad, Kerala- These forests are characterised by a high proportion of Mesua ferrea, Palaquium ellipticum, Cullenia excelsa and Calophyllum elatum. The absence of Dioterocarpus indicus, Filicium, Kingiodendron pinnatum and Hopea is noteworthy;	15.13

	these species are met with at lower elevations in the adjoining Kannoth block, where Merua is absent. Top Storey: Palaquium ellipticum, Vateria, (especially near water courses), Calophyllum elatum, Cullenia excelsa, Dysoxylum malabaricum, Artocarpus hirsutus, Cedrela toona, Machilus macranthus, Mesua ferrea, Elaeocarpus tuberculatus, Bischofia, Eugenia spp., Canarium. Middle Storey: Palaquium ellipticum, Moristica spp., Vateria, Eugenia munroi, Actinodaphne hirsuta, Ostodes, Euphoria longana, Litsea spp. Meliosm simplicifolia, Polvalthia coffeoides, Cinnamomum zeylanicum, Elaeocarpus serratus, Bamboos appear mainly as Ochlandra brakes along the larger streams but occasionally spread out on the slopes. Lower Storey: Leea indica, Rubiaceae, Apama, Areca, Strobilanthes spp., Psychotria, Lasianthus, Pandanus spp., Glycosmis, Calamus spp., Laportea crenulata, large ferns. 2. High Level Evergreen Forests of Nilambur (Kerala)-- Top Storey: Palaquium ellipticum, Cullenia excelsa, Calophyllum elatum, Terminalia bellirica, Machilus macranthus, Dysoxylum malabaricum, Elaeocarpus tuberculatus, Artecarpus hirsutus.
Middle Storey: Eugenia gardneri, Cinnamomum zeylanicum,	
Bischofia javanica, Cedrela toona, Elaeocarpus spp., Xylopia	
parviflora., Ochlandra spp.	
Lower Storey: Strobilanthes, Rubiaceae, Pinanga dicksonii,	
Arenga wightii.	
NOTE. Here Palaquium is the commonest species. Hopea is	
found sparsely, scattered below 750 m. Mesua ferrea is	
abundant from 9oo m. to 1,200 m. Calophyllum tends to be	
gregarious in patches. Dipterocarpus is absent.	

2A/C2 West Coast Semi-Evergreen Forest

i) Wynaad and Palghat, Kerala-

Top Storey: Artocarpus hirsutus, Salmalia malabarica, Vitex altissima, Tetrameles nudiflora, Acrocarpus fraxinifolius, Hopea parviflora, Lagerstroemia lanceolata, Vateria indica, Anthocephalus cadamba, Xylia xylocarpa, Terminalia tomentosa, Cedrela toona, Grewia tiliifolia, Dalbergia latifolia, Pterospermum rubiginosum, Radermachera xylocarpa, Mesua ferrea, Adina cordifolia, Holoptelea integrifolia, Pterocarpus marsupium, Sterculia guttata.
Middle Storey: Hydnocarpus laurifolia, H. alpina, Bischofia javanica, Mallotus philippensis, Kydia calycina, Schleichera oleosa, Evodia lunuankenda, Bambusa arundinacea, Ochlandra spp.
(ii) Trivandrum, Kerala-

Top Storey: Artocarpus hirsutus, Hopea parviflora, Adina cordifolia, Lagerstroemia lanceolata, Terminalia paniculata, T. tomentosa, Salmalia malabarica, Tetrameles nudiflora, Vitex altissima, Holoptelea integrifolia, Vateria indica, Lophopetalum, Pterocarpus marsupium, Calophyllum elatum, Machilus macranthus, Grewia tiliifolia, Terminalia bellirica.

Middle Storey: Polyalthia fragrans, Canarium strictum, Cinnamomum zeylanicum, Aporosa lindleyana, Mallotus philippensis, Xanthophyllum flavescens, Emblica officinalis, Bridelia retusa, Albizia odoratissima. Bamboos and reeds very common.

Lower Storey: Clerodendron, Glycosmis pentaphylla, Strobilanthes spp.
3B/C2 Southern Moist Mixed Deciduous Forest
Top Storey: Terminalia paniculata, T. tomentosa, T. bellirica, Pterocarpus marsupium, Albizia procera, Alstonia scholaris,

		Dillenia pentagyna, Bridelia retusa, Salmalia malabarica, Grewia tiliifolia. Middle Storey: Xylia xylocarpa, Careya arborea, Callicarpa lanata, Cassia fistula, Strychnos nux-vomica. Lower Storey: Croton reticulatus, Anisomeles heyneana, Carissa carandas. Ranni, Kerala- Top \& Middle Storey: Terminalia paniculata, T. tomentosa, Pterocarpus marsupium, Anogeissus latifolia, Careya arborea, Buchanania lanzan, Emblica officinalis, Dillenia pentagyna, Salmalia insignis, Sterculia villosa, Albizia odoratissima, Cassia fistula, Gmelina arborea, Taberaemontana heyneena, Bauhinia malabarica, Wrightia tinctoria.	
15.	Madhya Pradesh	5A/C1b Dry Teak Forest Top Storey /Middle Storey: Tectona grandis, Anogeissus latifolia, Diospyros tomentosa. Pterocarpus marsupium, Dalbergia latifolia, Cassia fistula, Butea monosperma, Adina cordifolia, Mitragyna parvifolia, Bridelia retusa, Aegle marmelos, Lagerstroemia parviflora, Wrightia tinctoria, Bauhinia spp., Alangium salviifolium, Dendrocalamus strictus. Lower Storey: Nyctanthes arbor-tristis, Woodfordia fruticosa, Helicteres isora, Grewia hirsuta, Gymnosporia spinosa, Indigofera pulchella, Adhatoda vasica, Carissa spp., Holarrhena antidysenterica, Lantana camara.	26.40
		5A/C3 Southern Dry Mixed Deciduous Forest Top Storey /Middle Storey: Terminalia tomentosa, Anogeissus latifolia, Mitragyna parvifolia, Schrebera swietenioides, Madhuca indica, Diospyros tomentosa, Buchanania lanzan, Lagerstroemia parviflora, Emblica officinalis, Cassia fistula, Aegle marmelos, Butea monosperma, Santalum album, Albizia spp., Boswellia serrata,	24.55

		Chloroxylon swietenia, Syzygium cumini, Hardwickia binata, Acacia arabica, Prosopis juliflora, Sterculia urens. Lower Storey: Nyctanthes arbor-tristis, Ziziphus spp. Helicteres isora, Vitex negundo, Adhatoda vasica, Gymnosporia spinosa, Randia dumetorum, Flacourtia indica, Grewia spp., Woodfordia fruticosa, Balanites aegyptiaca, Carissa spp., Holarrhena antidysenterica, Lantana camara.	
		5B/C2 Northern Dry Mixed Deciduous Forest Top Storey \& Middle Storey: Anogeissus pendula, Acacia catechu, Anogeissus latifolia, Diospyros melanoxylon, Madhuca indica, Butea monosperma, Emblica officinalis, Feronia limonia, Albizia spp., Acacia leucophloea, A. arabica, Soymida febrifuga, Miliusa tomentosa, Bauhinia spp., Dendrocalamus strictus. Lower Storey: Carissa spp., Flacourtia indica, Ziziphus xylopyrus, Ziziphus nummularia, Capparis decidua, Calotropis procera, Falanites aegyptiaca, Holarrhena antidysenterica, Grewia spp., Adhatoda vasica, Gymnosporia spinosa.	18.55
16.	Maharashtra	5A/C3 Southern Dry Mixed Deciduous Forest Top Storey /Middle Storey: Boswellia serrata, Acacia leucophloea, Bauhinia tomentosa, Rhus mysorensis, Lannea coromandelica, Flacourtia indica, Cochlospermum religiosum, Anogeissus latifolia, Terminalia tomentosa, Gymnosporia spinosa, Ziziphus mauritiana, Ziziphus oenopolia, Ziziphus xylopyrus, Azadirachta indica, Santalum album, Osyris wightiana, Tectona grandis, Heterophragma quadriloculare, Stereospermum personatum, Dolichandrone falcata.	26.30

		racemosa, Holarrhena antidysenterica, Flacourtia indica, Randia dumetorum, Dendrocalamus strictus. Lower Storey: Helicteres isora, Calotropis gigantea, Grewia spp., Woodfordia fruticosa, Nyctanthes arbor-tristis.	
17.	Manipur	8B/C1 East Himalayan Sub-Tropical Wet Hill Forest a) Langool Reserve. Quercus-Laurus-Schima hylium, 800, to $1,000 \mathrm{~m}$. or more. Top Storey: Lithocarpus spicatus, Quercus vercus (fenestrata), Quercus serrata, Castanopsis, Schima, Cinnamomum, Saurauia spp, Litsea spp., Machilus, Syzygium, Cedrela toona. Middle Storey/Lower Storey: Psychotria, Flacourtia, Symplocos, Crateva nurvala, and Emblica. (b) Ukhrul and Shugnu. Pinus-Quercus hylium, 1,200 to 1,500 m., $1,750 \mathrm{~mm}$. rainfall, volacanic rock. Top Storey: Pinus insularis (khasya) dominant. Middle Storey: Quercus spp., Lithocarpus, Schima, Castanopsis spp., Betula alnoides, Acer oblongum, Engelhardia spp., Symplocos. Lower Storey: Pittosporum spp., Myrsine, Debregeasia, Rubus spp., etc. (c) Koupru and Maohing. Saurauia-Phoebe-Beilschmiedia hylium, 900 to $1,800 \mathrm{~m}$., 3,000 to $4,000 \mathrm{~mm}$. rainfall. Top Storey/Middle Storey: Saurauia spp., Phoebe lanceolata, Beilschmiedia, Cinnamomum cecicodaphne, Schima, Lauraceae (many spp.), Ostodes. Lower Storey: Abundant shrub layer.	33.69
		3C/C3b East Himalayan Moist Mixed Deciduous Forest Top Storey: Lagerstroemia parviflora, Terminalia bellirica, Sterculia villosa, Salmalia malabarica, Schima wallichii	24.48

		Middle Storey: Careya arborea, Bauhinia purpurea, Amoora spp.	
		2B/C2 Cachar Semi-Evergreen Forest Kabaw Valley, Manipur. 100 m. (DEB)- Top Storey: Dipterocarpus tuberculatus, D. turbinatus, Melanorrhoea usitata, Duabanga grandiflora, Xylia dolabriformis, Dillenia pentagyna, Lagerstroemia parviflora, Terminalia tomentosa, Gmelina arborea. Middle Storey: Terminalia citrina, Emblica officinalis, Engelhardia spicata, Saurauia nepaulensis, Symplocos racemosa, Mallotus philippensis, Melocanna bambusoides. Lower Storey: Wendlandia grandis, Woodfordia fruticosa, Buddleia asiatica, Indigofera pulchella, Leea spp., Desmodium spp., Licuala peltata.	15.39
18.	Meghalaya	3C/C3b East Himalayan Moist Mixed Deciduous Forest Top Storey: Lagerstroemia parviflora, Terminalia bellirica, Sterculia villosa, Salmalia malabarica, Schima wallichii Middle Storey: Careya arborea, Bauhinia purpurea, Amoora	47.73
		8B/C2 Khasi Sub-Tropical Wet Hill Forest Top Storey: Quercus spp., Manglietia insignis, Beilschmiedia spp., Cinnamomum spp., Machilus spp., Schima khasiana, Bucklandia, Ficus nemoralis. Middle Storey: Lindera spp., Ilex spp., Ligustrum spp., Litsea spp., Prunus spp., Pyrus spp., Symplocos spp., Myrica sapida, Lyonia spp., Chimonobambusa callosa. Lower Storey: Myrsine semiserrata, Daphne spp., Euonymus spp., Hypericum spp., Viburnum spp., Zanthoxylum spp., Rosa spp., Rubus spp.	20.43

		1B/C3 Cachar Tropical Evergreen Forest Top Storey \& Middle Storey: Palaquium, Diospyros topiosa, Cynometra polyandra, Dipterocarpus turbinatus, Mesua, Eugenia spp., Euphoria longana, Sapium baccatum, Vatica lanceifolia, Canarium spp., Hydnocarpus kurzii, Heritiera acuminata, Kayea floribunda.	8.52
19.	Mizoram	2/2S1 Secondary Moist Bamboo Brakes Melocanna bambusoides. Bambusa tulda Dendrocalamus hamiltonii	37.42
		3C/C3b East Himalayan Moist Mixed Deciduous Forest Top Storey: Lagerstroemia parviflora, Terminalia bellirica, Sterculia villosa, Salmalia malabarica, Schima wallichii. Middle Storey: Careya arborea, Bauhinia purpurea, Amoora spp.	30.79
		2B/C2 Cachar Tropical Semi-Evergreen Forest Top Storey \& Middle Storey: Palaquium, Diospyros topiosa, Cynometra polyandra, Dipterocarpus turbinatus, Mesua, Eugenia spp., Euphoria longana, Sapium baccatum, Vatica lanceifolia, Canarium spp., Hydnocarpus kurzii, Heritiera acuminata, Kayea floribunda.	30.70
20.	Nagaland	3C/C3b East Himalayan Moist Mixed Deciduous Forest Top Storey: Lagerstroemia parviflora, Terminalia bellirica, Sterculia villosa, Salmalia malabarica, Schima wallichii Middle Storey: Careya arborea, Bauhinia purpurea, Amoora spp.	38.44
		2B/2S2 Eastern Alluvial Secondary Semi-Evergreen Forest Top Storey: Ailanthus grandis, Pterospermum, Albizia lucida, Stereospermum, Terminalia citrina, T. bellirica, Dipterocarpus macrocarpus, Anthocephalus.	17.55

		Middle Storey: Macaranga, Mallotus albus, Zanthoxylum, Alstonia, Actinodaphne, Litsea monopetala, Bambusa pallida, Pseudostachyum, Dendrocalamus hamiltonii. Lower Storey: Laportea, Melastoma	
		8B/C2 Khasi Sub-Tropical Wet Hill Forest Top Storey: Quercus spp., Manglietia insignis, Beilschmiedia, Cinnamomum spp., Machilus spp., Schima khasiana, Bucklandia, Ficus nemoralis. Middle Storey: Lindera spp., Ilex spp., Ligustrum spp., Litsea spp., Prunus spp., Pyrus spp., Symplocos spp., Myrica sapida, Lyonia spp., Chimonobambusa callosa. Lower Storey: Myrsine semiserrata, Daphne spp., Euonymus spp., Hypericum spp., Viburnum spp., Zanthoxylum spp., Rosa spp., Rubus spp.	16.09
21.	Odisha	3C/C2e (ii) Moist Peninsular Low Level Sal Top Storey: Shorea robusta, Terminalia tomentosa, Adina cordifolia, Mitragyna parvifolia, Lagerstroemia parviflora, Anogeissus latifolia, Bridelia retusa, Albizia procera, Hymenodictyon excelsum, Pterocarpus marsupium, Salmalia malabarica, Gmelina arborea. Middle Storey: Cleistanthus collinus, Dalbergia latifolia, Dalbergia paniculata, Syzygium cumini, Dillenia pentagyna, Careya arborea, Diospyros spp., Mallotus philippensis, Dendrocalamus strictus. Lower Storey: Cipadessa fruticosa, Woodfordia fruticosa, Clerodendrum viscosum, Ziziphus oenopolia.	22.06
		5B/C2 Northern Dry Mixed Deciduous Forest Top Storey: Adina cordifolia, Lagerstroemia parviflora, Anogeissus latifolia, Terminalia tomentosa, Mitragyna parvifolia, Dalbergia latifolia, Hymenodictyon excelsum, Bridelia retusa, Albizia spp., Salmalia malabarica, Shorea	21.29

		robusta, Pterocarpus marsupium, Dalbergia paniculata, Protium serratum, Stereospermum suaveolens, Terminalia bellirica, Melia composita, Cleistanthus collinus, Diospyros tomentosa, Lannea coromandelica. Middle Storey: Ougeinia oojeinensis, Cassia fistula, Alangium salviifolium, Careya arborea, Holarrhena antidysenterica, Casearia tomentosa, Mallotus philippensis, Randia spp., Feronia limonia, Acacia leucophloea, Ziziphus xylopyrus, Chloroxylon swietenia, Gardenia latifolia, Dendrocalamus strictus. Lower Storey: Helicteres isora, Strobilanthes spp., Moghania, Gardenia gummifera.	
		5B/C1c Dry Peninsular Sal Forest Top Storey: Shorea robusta, Terminalia tomentosa, Pterocarpus marsupium, Anogeissus latifolia, Lagerstroemia parviflora, Adina cordifolia, Terminalia bellirica, Acacia catechu, Buchanania lanzan. Middle Storey: Cleistanthus collinus, Chloroxylon swietenia, Emblica officinalis, Cassia fistula, Terminalia chebula, Wendlandia tinctoria, Symplocos racemosa, Dendrocalamus strictus. Lower Storey: Indigofera pulchella, Phoenix acaulis.	17.79
22.	Punjab	5B/C2 Northern Dry Mixed Deciduous Forest Top Storey: Acacia catechu, Anogeissus latifolia, Lannea coromandelica, Aegle marmelos, Feronia limonia, Ehretialaevis, Kydia calycina, Ougeinia oojeinensis, Mitragyna parvifolia, Flacourtia indica. (i) Kangra Division, Punjab- Middle Storey: Mallotus philippensis, Nyctanthes arbortristis, Dendrocalamus strictus	67.29

		Lower Storey: Carissa opaca, Dodonara viscosa, Woodfordia fruticose, Adhatoda vasica	
		6B/C2 Ravine Thorn Forest Top Storey \& Middle Storey: Acacia senegal, A. leucophloea, Prosopis spicigera, Salvadora oleoides. Lower Storey: Capparis decidua, Ziziphus mauritiana, Z. nummularia, Calotropis procera, Tephrosia purpurea	4.17
		5/E9 Dry Bamboo Brakes Dendrocalamus strictus	1.62
23.	Rajasthan	5B/C2 Northern Dry Mixed Deciduous Forest (i) Chittorgarh Division, Rajasthan- Top Storey: Anogeissus latifolia, Boswellia serrata, Terminalia tomentosa, Sterculia urens, Lannea coromandelica, Diospyros melanoxylon, Albizia odoratissima, Soymida febrifuga, Cassia fistula, Bridelia retusa, Bauhinia racemosa, Mitragyna parvifolia, Butea monosperma, Ficus spp., Dalbergia paniculata. Middle Storey: Acacia catechu, Acacia leucophloea, Nyctanthes arbor-tristis, Ziziphus mauritiana, Prosopis spicigera, Wrightia tinctoria, Flacourtia indica, Dendrocalamus strictus. Lower Storey: Carissa spinarum, Ziziphus nummularia, Grewia spp. (ii) Udaipur Division, Rajasthan- Top Storey \& Middle Storey: Anogeissus latifolia, Boswellia serrata, Lannea coromandelica, Sterculia urens, Terminalia arjuna, Salmalia malabarica, Soymida febrifuga, Albizia odoratissima, Acacia leucophloea, Emblica officinalis, Wrightia tinctoria, Mitragyna parvifolia. Lower Storey: Holarrhena antidysenterica, Vitex negundo, Woodfordia fruticosa, Jatropha spp.	40.07

		11B/C1b Buk Oak Forest Top Storey: Quercus lamellosa, Castanopsis tribuloides, Acer campbellii, Michelia doltsopa, Alcimandra cathcartii, Sloanea dasycarpa. Middle Storey: Machilus spp., Litsea spp., Arundinaria spp. Lower Storey: Rubus spp., Strobilanthes spp.	23.04
25.	Tamil Nadu	5A/C3 Southern Dry Mixed Deciduous Forest Top Storey: Shorea talura, Dalbergia latifolia, Terminalia tomentosa, T. chebula, T. paniculata, Pterocarpus marsupium, Albizia odoratissima, Anogeissus latifolia, Cassia fistula, Hardwickia binata, Santalum album. Middle Storey: Dendrocalamus strictus. Top Storey and Middle Storey: Hardwickia binata, Anogeissus latifolia, Chloroxylon swietenia, Erythroxylon monogynum, Acacia catechu	22.43
		5/2S1 Secondary Dry Deciduous Forest Top Storey: Salmalia malabarica, Buchanania lanzan, Grewia tiliifolia, Elacodendron glaucum, Schleichera oleosa, Lannea coromandelica, Semecarpus anacardium, Tectona grandis. Middle Storey: Feronia limonia, Aegle marmelos, Ziziphus xylopyrus, Careya arborea, Gardenia spp., Dolichandrone atrovirens, Santalum album. Lower Storey: Dodonaea viscosa, Carissa spinarum, Holarrhena antidysenterica, Lantana	9.91
		6A/C1 Southern Thorn Forest Top Storey \& Middle Storey: Chloroxylon swietenia, Albizia amara, Acacia chundra, A. ferruginaca, Azadirachta indica, Canthium dicoccum, Erythroxylon monogynum, Ziziphus mauritiana, Z. xylopyrus, Cleistanthus collinus, Dichrostachys cinerea, Atalantia monophylla	6.85

26.	Telangana	5A/C3 Southern Dry Mixed Deciduous Forest Top Storey: Terminalia tomentosa, Bauhinia racemosa, Acacia arabica, A. catechu, Boswellia serrata, Buchanania lanzan, Azadirachta indica, Ougelnia oojeinensis, Flacourtia indica. Middle Storey: Gymnosporia spinosa, Ziziphus mauritiana, Z. xylopyrus, Morinda tinctoria. Lower Storey: Mimosa hamata, Terminalia tomentosa, Grewia hirsuta.	60.52
		5B/DS1 Dry Deciduous Scrub Scattered Acacia leucophloea, Bauhinia racemosa, Dalbergia paniculata, Wrightia tinctoria, Ziziphus xylopyrus, Cassia fistula, Randia, Annona, Heteropogon contortus, Eragrostis spp.	19.21
		5A/C1b Dry Teak Forest Top Storey: Tectona grandis, Pterocarpus marsupium, Anogeissus latifolia, Dalbergia latifolia, Terminalia tomentosa, Chloroxylon swietenia, Lannea coromandelica, Dalbergia paniculata, Salmalia malabarica, Terminalia bellirica, Madhuca indica, Lagerstroemia parviflora, Boswellia serrata, Sterculia urens. Middle Storey: Diospyros tomentosa, Buchanania lanzan, Acacia chundra, Acacia leucophloea, Aegle marmelos, Soymida febrifuga, Wrightia tinctoria, Butea monosperma, Cleistanthus collinus, Ziziphus xylopyrus. Lower Storey: Randia dumetorum, Cassia auriculata, Nyctanthes arbor-tristis, Helicteres isora, Ziziphus spp.	14.84
27.	Tripura	3C/C3b East Himalayan Moist Mixed Deciduous Forest Top Storey: Lagerstroemia parviflora, Terminalia bellirica, Sterculia villosa, Salmalia malabarica, Schima wallichii	39.89

		Middle Storey: Careya arborea, Bauhinia purpurea, Amoora spp.	
		2B/C2 Cachar Semi-Evergreen Forest Top Storey \& Middle Storey: Palaquium, Diospyros topiosa, Cynometra polyandra, Dipterocarpus turbinatus, Mesua, Eugenia spp., Euphoria longana, Sapium baccatum, Vatica lanceifolia, Canarium spp., Hydnocarpus kurzii, Heritiera acuminata, Persea owdenii, Kayea floribunda.	27.47
		2/2S1 Secondary Moist Bamboo Brakes Dendrocalamus hamiltonii	7.55
28.	Uttar Pradesh	5B/C2 Northern Dry Mixed Deciduous Forest Top Storey: Anogeissus latifolia, Boswellia serrata, Acacia catechu, Shorea robusta, Bauhinia spp., Cochlospermum religiosum, Terminalia tomentosa, Buchanania lanzan, Diospyros tomentosa, Terminalia bellirica, Hymenodictyon excelsum, Garuga pinnata, Kydia calycina, Sterculia pallens, Mitragyna parvifolia, Bridelia retusa. Middle Storey: Nyctanthes arbor-tristis, Gardenia turgida, Ougeinia oojeinensis, Ehretia laevis, Aegle marmelos, Emblica officinalis, Feronia limonia, Holarrhena antidysenterica, Cordia dichotoma, Ziziphus xylopyrus, Wendlandia exserta, Cassia fistula, Casearia tomentosa, Butea monosperma, Flacourtia indica, Ziziphus mauritiana, Dendrocalamus strictus Lower Storey: Woodfordia fruticosa, Nyctanthes arbortristis, Indigofera pulchella.	34.90
		3C/C2d (i) Western Light Alluvium Plains Sal (i) North Kheri Division, Uttar Pradesh- Top Storey: Shorea robusta, Terminalia tomentosa, T. bellirica, Lagerstroemia parviflora, Adina cordifolia, Kydia	10.06

		calycina, Stereospermum suaveolens, Schleichera oleosa, Ficus spp. Middle Storey: Syzygium cumini, Miliusa velutina, Semecarpus anacardium, Bauhinia malabarica, Grewia spp., Mallotus philippensis, Butea monosperma, Holarrhena antidysenterica. Lower Storey: Helicteres isora, Ardisia solanacea, Moghania, Clerodendrum viscosum, Murraya koenigii. (ii) South Kheri Division, Uttar Pradesh- Top Storey: Shorea robusta, Terminalia tomentosa, Lagerstroemia parviflora, Diospyros tomentosa, Stereospermum suaveolens, Madhuca indica. Middle Storey: Buchanania lanzan, Bridelia retusa, Syzygium cerasoideum, Mallotus philippensis, Holarrhena antidysenterica, Ehretia laevis, Casearia tomentosa, Bauhinia malabarica, Aegle marmelos. Lower Storey: Carissa spinarum, Ziziphus mauritiana, Ziziphus oenopolia, Helicteres isora.	
		6B/C2 Ravine Thorn Forest Top Storey: Acacia leucophloea, Prosopis spicigera, Azadirachta indica, Holoptelea integrifolia, Acacia arabica, Salvadora oleoides, Balanites aegyptiaca, Flacourtia indica. Middle Storey: Capparis decidua, C. sepiaria, C. zeylanica, Carissa opaca, Ziziphus spp., Dichrostachys cinerea, Calotropis procera, Adhatoda vasica	5.11
29.	Uttarakhand	9/C1b Upper or Himalayan Chir Pine Forest Top Storey: Pinus roxburghii Middle Storey: Ficus roxburghii, Syzygium cumini, Engelhardtia colebrookiana, Lyonia ovalifolia, Quercus incana, Rhododendron arboreum, Symplocos crataegoides, Myrica sapida.	27.97

		Lower Storey: Indigofera dosua, Flemingia fruticulosa, Lespedeza sericea, Rubus ellipticus, Viburnum coriaceum, Glochidion velutinum, Leptodermis lanceolata, Aechmanthera tomentosa.	
		3C/C2a Moist Siwalik Sal Forest Top Storey: Shorea robusta, Anogeissus latifolia, Terminalia tomentosa, Adina cordifolia, Pinus roxburghii, Lannea coromandelica, Garuga pinnata, Terminalia bellirica, Diospyros tomentosa. Middle Storey: Ougeinia oojeinensis, Buchanania lanzan, Semecarpus anacardium, Ehretia laevis, Bauhinia spp., Cassia fistula, Casearia tomentosa, Emblica officinalis, Olea glandulifera, Engelhardia colebrookeana, Machilus odoratissima, Dendrocalamus strictus. Lower Storey: Colebrookia oppositifolia, Murraya koenigii, Woodfordia fruticosa, Berberis asiatica, Indigofera pulchella, Clerodendrum viscosum, Pogostemon plectranthoides.	14.05
		12/C1a Ban Oak Forest (Q. incana) Top Storey: Quercus incana, Carpinus viminea, Cedrela serrata. Middle Storey: Rhododendron arboreum, Lyonia ovalifolia, Euonymus pendulus, Ilex dipyrena, Betula alnoides, Lindera pulcherrima, Litsea umbrosa. Lower Storey: Viburnum cotinifolium, Desmodium tiliaefolium, Indigofera gerardiana, Rubus niveus, Boenninghausenia spp., Myrsine africana, Deutzia staminea.	13.86
30.	West Bengal	5B/C1c Dry Peninsular Sal Forest 1) Shorea-Anogeissus-Woodfordia association Top Storey \& Middle Storey: Shorea robusta, Anogeissus latifolia, Boswellia serrata, Cochlospermum religiosum, Dilleniaaurea, Ziziphus xylopyrus, Gardenia gummifera.	16.31

		Lower Storey: Woodfordia fruticosa, Wendlandia tinctoria, Grewia hirsuta, Phoenix acaulis. (2) Shorea-Gardenia-Eulaliopsis association. Top Storey \& Middle Storey: Shorea robusta, Buchanania lanzan, Eugenia caryophyllifolia, Gardenia gummifera, Madhuca indica, Diospyros tomentosa, Emblica officinalis. Cephalostachyum pergracile. Lower Storey: Wendlandia tinctoria, Phoenix acaulis.	
		4B/TS2 Mangrove Forest (i) W. Sunderbans- Top Storey/Middle Storey: Rhizophora candelaria, Kandelia candel, Avicennia alba, Bruguiera conjugata, Xylocarpus moluccensis (Carapa), Ceriops tagal, Lumnitzera racemosa, Xylocarpus granatum, Excoecaria agallocha, Ceriops roxburghiana, Sonneratia apetala. (ii) Krishna and Godavari deltas Top Storey/Middle Storey: Avicennia officinalis, Rhizophora mucronata, R. candelaria, Ceriops roxburghiana, Bruguiera spp., Sonneratia apetala. Lower Storey: Acanthus ilicifolius, Clerodendrum inerme.	5.89
		4B/TS3 Salt Water Mixed Forest (Heritiera) Top Storey/Middle Storey: Heritiera minor, Excoecaria agallocha, Ceriops roxburghiana, Xylocarpus moluccensis, Bruguiera conjugata, Avicennia officinalis, Amoora cucullata, Aegialitis rotundifolia Lower Storey: Nipa relatively uncommon	2.80
31.	 Nicobar Islands	1A/C2 Andamans Tropical Evergreen Forest (i) Andamans. Top Storey: Dipterocarpus grandiflorus, D. pilosus, Artocarpus chaplasha, A. gomezianus, Calophyllum soulattri,	43.70

Planchonia andamanica, Hopea odorata, Endospermum chinense, Sideroxylon longipetiolatum. Middle Storey: Xanthophyllum andamanicum, Myristica andamanica, M. glaucescens, Baccaurea sapida, Croton argyratus, Pterospermum aceroides, Caryota mitis, Cryptocarya, Memecylon spp., Euphorbia epiphylloides, Pseuduvaria prainii, Actephila excelsa. Lower Storey: Anaxagorea luzonensis, etc. (ii) Gopalkabang valley, South Andamans- Top Storey: Dipterocarpus kerrii, D. grandiflorus, D. gracilis. Middle Storey: Artocarpus, Planchonia, Hopea odorata, Pterospermum aceroides, Myristica andamanica, Elaeocarpus spp. Middle Storey: Oxytenanthera nigrociliata, Macaranga andamanica, Mussaenda macrophylla, Leea spp., Evodia glabra, Licuala peltata, Pandanus, Clinogyne grandis.	
2A/C1 Andamans Semi-Evergreen Forest Top Storey: Dipterocarpus alatus, D. pilosus, Pterygota alata, Pterocymbium tinctorium, Sterculia campanulata, Terminalia bialata, T. procera, Albizia chinensis, A. lebbek, Calophyllum soulattri, Salmalia insignis, Artocarpus lakoocha, A. chaplasha, Pterocarpus dalbergioides. Middle Storey: Lagerstroemia hypoleuca, Dillenia pentagyna, Dracontomelum mangiferum, Pometia pinnala, Myristica irya, Pisonia excelsa, Litsea panamonja, Xanthophyllum andamani-cum, Fagraea morindaefolia, Talauma andamanica, Garcinia andamanica, Aporosa villosula, Licuala peltata, Caryota mitis, Areca triandra. Middle Storey: Usually no bamboos. Oxytenanthera spp.	29.30

		Middle Storey: Saprosma ternata, Maesa andamanica, Micromelum pubescens, Clerodendrum viscosum, Leea indica, Clinogyne grandis.	
		4B/TS2 Mangrove Forest Andaman Islands Rhizophora mucronata, R. candelaria, Bruguiera conjugata, B. parviflora, Avicennia officinalis, Ceriops tagal, Kandelia candel, Xylocarpus moluccensis, Sonneratia caseolaris, Excoecaria spp., etc. Great Nicobar Islands Bruguiera conjugata, Carallia brachiata, Sonneratia caseolaris, Nipa fruticans, Areca triandra.	10.96
32.	Chandigarh	5B/C2 Northern Dry Mixed Deciduous Forest Top Storey: Acacia catechu, Anogeissus latifolia, Lannea coromandelica, Aegle marmelos, Feronia limonia, Ehretialaevis, Kydia calycina, Ougeinia oojeinensis, Mitragyna parvifolia, Flacourtia indica. Middle Storey: Mallotus philippensis, Nyctanthes arbortristis, Dendrocalamus strictus, Carissa opaca, Dodonara viscosa, Woodfordia fruticose, Adhatoda vasica	48.33
		5B/DS1 Dry Deciduous Scrub Top Storey: Nyctanthes arbor-tristis, Dodonaea viscosa, Woodfordia fruticosa, Carissa opaca, Flacourtia indica, Lannea coromandelica, Aegle marmelos, Cassia fistula, Acacia catechu.	0.09
33.	Dadra \& Nagar Haveli	3B/C2 Southern Moist Mixed Deciduous Top Storey: Adina cordifolia, Grewia tiliifolia, Madhuca indica, Dillenia pentagyna, Cinnamomum, Litsea, Olea dioica. Middle Storey: Emblica officinalis, Xylia xylocarpa, Bambusa arundinacea, Dendrocalamus strictus, Tabernaemontana spp. etc.,	77.66

		3B/C1b Moist Teak Forest Top Storey: Tectona grandis, Terminalia tomentosa, Adina cordifolia, Dalbergia latifolia, Madhuca indica, Pterocarpus marsupium, Mitragyna parvifolia, Lagerstroemia parviflora, Albizia spp., Salmalia malabarica, Diospyros tomentosa, Careya arborea, Stereospermum personatum, Tamarindus indica Middle Storey: Xylia xylocarpa, Grewia tiliifolia, Cleistanthus collinus, Emblica officinalis, Schleichera oleosa, Diospyros montana, Ixora arborea. MIDDLE STOREY: Dendrocalamus strictus, Helicteres isora, Petalidium barlerioides, Pogostemon plectranthoides, Indigofera spp.	9.44
		5A/C3 Southern Dry Mixed Deciduous Top Storey/Middle Storey: Boswellia serrata, Acacia leucophloea, Bauhinia tomentosa, Rhus mysorensis, Lannea coromandelica, Flacourtia indica, Cochlospermum religiosum, Anogeissus latifolia, Terminalia tomentosa, Middle Storey: Gymnosporia spinosa, Ziziphus mauritiana, Ziziphus oenopolia, Z. xylopyrus, Azadirachta indica, Santalum album, Osyris wightiana, Tectona grandis, Heterophragma quadriloculare, Stereospermum personatum, Dolichandrone falcata.	4.31
34.	Daman \& Diu	4B/TS2 Mangrove Forest Rhizophora mucronata, R. candelaria, Bruguiera conjugata, B. parviflora, Avicennia officinalis, Ceriops tagal, Kandelia candel, Xylocarpus moluccensis, Sonneratia caseolaris, Excoecaria spp., etc.	14.79
		6B/C1 Desert Thorn Forest Top Storey: Acacia senegal, A. leucophloea, Cordia roth	14.45

| | Middle Storey: Azadirachta indica, Euphorbia nivulia,
 Balanites aegyptiaca, Salvadora, Commiphora mukul,
 Capparis spp., Grewia tenax, G. villosa, Premna integrifolia. | |
| :--- | :--- | :--- | :--- |
| | 4A/L1 Littoral Forest
 Top Storey: Casuarina equisetifolia, Calophyllum
 inophyllum, Terminalia catappa.
 Middle Storey: Barringtonia asiatica, Erythrina variegata,
 Guettarda speciosa, Pongamia pinnata, Heritiera littoralis,
 Cerbera manghas, Ochrosia oppositifolia.
 Middle Storey: Ixora spp., Cycas rumph,
 Asplenium nidus, Dendrobium spp., Bulbophyllum spp.
 Top Storey/Middle Storey: Hibiscus tiliaceus, Thespesia
 populnea, Erythrina variegata, Ixora arborea, Vitex negundo,
 V. trifolia, Trewia nudiflora, Dolichandrone spathacea | |
| Puducherry | 4B/TS2 Mangrove Forest
 Rhizophora mucronata, R. candelaria, Bruguiera conjugata,
 B. parviflora, Avicennia officinalis, Ceriops tagal, Kandelia
 candel, Xylocarpus moluccensis, Sonneratia caseolaris,,
 Excoecaria spp. etc. | |

IMPORTANT TREES SPECIES AS UPPER STORY

Botanical Name \& Common name Family/ Maturity Period	Active ingredients (Useful parts)	Varieties available/source	Gross production /income	Major Medicinal properties/Uses	Photographs
Aegle marmelos L . (Bael) Family- Rutaceae Maturity period- After 4-5 year	Carotenoids, Phenolics, alkaloids, Coumarins, flavonoids, terpenoids, and other antioxidants (Fruit, Bark)	Goma Yashi (Source-ICAR-CIAH, Bikaner) Narendra Bael (NB-5, Narendra Bael -7, Narendra Bael-9, Narendra Bael -16 and Narendra Bael -17 (Source- N.D. University of Agriculture and Technology, Kumarganj, Faizabad, U.P.) Pant Aparna, Pant Sujata, Pant Urvashi and Pant Shivani (Source-G. B. Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand) CISHB-1 and CISHB-2 (Source: Central Institute for Sub- tropical Horticulture, Lucknow, Uttar Pradesh) Thar Divya, Thar Neelkanth, Thar Gaurav and Thar Srishi (ICAR-CIAH, Bikaner)	Dhar Divya- Average yield/plant is 85.20 kg in $9^{\text {th }}$ year. Thar Neelkand-Yield: 70-75 kg per plant ($8^{\text {th }}$ Year) Yield: $58.58 \mathrm{~kg} /$ plant $\left(7^{\text {th }}\right.$ year) and $124.36 \mathrm{~kg} /$ plant ($12^{\text {th }}$ year) NB-5-28.78 kg par plant ($6^{\text {th }}$ year) NB-9-56 kg/plant ($6^{\text {th }}$ year) NB-7- (starts fruiting in the 4 th year, $32.10 \mathrm{~kg} /$ plant $\left(6^{\text {th }}\right.$ year) Pant Aparna- $40.25 \mathrm{~kg} /$ plant ($6^{\text {th }}$ year) CISHB-1-42.64 kg/plant ($6^{\text {th }}$ year and fruiting starts in the 4 th year) CISHB-2-3845 $\mathrm{kg} /$ plant ($6^{\text {th }} \quad$ year) Goma Yashi-51 kg/plant ($6^{\text {th }}$ year)	Diarrhea, Dysentery, Constipation	

Azadirachta indica A. Juss., (Neem) Family- Meliaceae Maturity period- After 3-5 years	Azadirachtin, Nimbolinin, Nimbin, Nimbidin, Nimbidol, Salannin, and Quercetin. (Leaf, Seed)	6 cultivers -FRI-IFFCO-1, FRI-IFFCO-2, FRI-IFFCO-3, FRI-IFFCO-4, FRI-IFFCO-5, FRI-IFFCO-6 Recommended for eastern plateau (Bundelkhand Uphill), Northern plains (Rajasthan) then upland and Gujrat plains) and Deccan plateau hot semi-arid region.	Seeds 10-12 kg/tree/yr	Various skin disorders, diabetes, Ulcer, and worm	
Buchanania lanzan Lour. (Chironji) Family- Anacardiaceae Maturity period- After 10 years	Fatty oil, Seed cakecontainsfibres, carbohydrates, mineral, fats, vitamin $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{C}$, calcium, chlorine copper, iron, magnesium, phosphorus, potassium, sodium, sulfur, fatty oil, β-amyrin l,	Buchanania lanzan var. Palodensis (Source- Kumar et al., 2020) Thar Priya (Source: ICAR, CIAH, Bikaner, Rajasthan)	Thar Priya - $11.90 \mathrm{~kg} /$ plant (Start bearing in $4^{\text {th }}$ year of planting)	Useful in the treatment of diarrhoea, leaves are used in the treatment of skin diseases and fruits are used in treating coughs and asthma	
Emblica officinalis L. (Amla) Family- Euphorbiaceae Maturity period-After 4th year	Vitamin - C (Fruit)	Banarasi, Chakaiya, Francis, NA-4 (Krishna), NA-5 (Kanchan), NA-6, NA-7 (Promising variety), NA-10, BSR-1 (Bhavanisagar). (Source) Goma Aishwarya (ICAR-CIAH, CIAH, Bikaner, Rajasthan)	NA- $7-51 \mathrm{~kg} /$ tree Chakaiya- $34 \mathrm{Kg} /$ tree NA- $628 \mathrm{Kg} /$ tree	Cough, diabetes, cold, laxative, hyper acidity.	

Moringa oleifera Lam. (Sahajan) Family- Moringaceae. Maturity period9 months	Flavonoids, alkaloids, phenols, vitamins, minerals, proteins, glycosides, glucosinolates, Isothiocyanates, terpenes, saponins, and tannins (Fruit, Leaf)	Periyakulam 1 and 2 (PKM1 and PKM2) (Source- Horticulture Research Station of Tamil Nadu Agricultural University (TNAU) Thar Harsha (Source: ICARCIAH, Bikaner, Rajasthan)	Average yield $200-220 \mathrm{~kg}$ fruits/tree/yr 138 tonn/ha (Spacing $1.2 \mathrm{~m} * 1.2 \mathrm{~m}$, approx. 19.87 $\mathrm{kg} /$ tree $)$ Thar Harsha- $45-48 \mathrm{~kg} /$ plant	Arthritis and other joint pain (rheumatism), asthma, cancer, constipation, diabetes, diarrhea, stomach and intestinal ulcers	
Morus alba L. (Sehtut, White mulberry) Family-Moraceae Maturity period-after $3^{\text {rd }}$ year		Kanva-2, S-36, S-54, Victory-1, S-13, S-34, MR-2 (Source: CSRTI, Mysore) Anantha (Source: Regional Sericulture Research Station in Andhra Pradesh) Vishala (Source: Central Silk Board, Bangalore) Thar Lohit and Thar Harit (Source: ICAR-CIAH, Bikaner, Rajasthan)	Fruit yield Thar Lohit- 12.4 kg to 26.5/tree/yr Thar Harit- 32.6 kg /tree/yr plant	The treatment of dizziness, insomnia, premature aging, atherosclerosis, liver and kidney disorders, and inflammation.	
Syzygium cumini L. (Jamun) Family- Myrtaceae Maturity period- Fruit bearing start in $3^{\text {rd }}$ year	Phenolic acids, Flavonoids and Anthocyaninsetc (Fruits)	Ram Jamun Jamun GJ-2, Jamun GJ-8, CISH J-37, CISH J-42 (Source: Central Institute for Subtropical Horticulture, Lucknow) Konkan Bahadoli (RFRS, Vengurla) Goma Priyanka- (ICAR-CIAH, Bikaner) Narendra Jamun 6-Narendra dev University of Agriculture and Technology, Faizabad, U.P. Rajendra Jamun-1 Bihar Agriculture Collage Bhagalpur Thar Krantiand Goma Priyanka (Source: ICAR-CIAH, Bikaner, Rajasthan)	Thar Kranti- $65.00 \mathrm{~kg} /$ tree $/ \mathrm{yr}$ Goma Priyanka- $30 \mathrm{~kg} /$ tree $/ \mathrm{yr}$	Antihyperglycemi c, Hypolipemiant, Anti- inflammatory, Cardioprotective, and Antioxidant activities.	

IMPORTANT SHRUBS SPECIES AS MIDDLE STORY

Punica granatum L. (Pomegranate) Family- Punicaceae Maturity period-	Flavonoids, Ellagitannin, Punicalagin, Eellagic acid, vitamins and minerals. (Fruit)	Ganesh, Mardula, Bhagwa, PhuleBhagwa Super, Phule Arakta and G 137 (Source: MPKV, Rahuri) CO-1 and Yercaud-1 (TNAU, Coimbatore), Ruby and Amlidana (Source: HR, Bengaluru) YCD-1 Pomegranate- (Source: Horticultural Research Station, Yercaud) Goma Khatta (Source: ICAR- CIAH, Bikaner, Rajasthan) CAZRI Vishal (Source: Singh and Meghwal, 2020) Jyoti (UAS, Dharwad)	Goma Khatta - 6.59 $\mathrm{kg} /$ tree and anardana yield is $1.18 \mathrm{~kg} /$ tree CAZRI Vishal- 12-15 t/ha $(3.5 \mathrm{~m} * 4 \mathrm{~m}$, approx. $16.8-21 \mathrm{~kg} /$ tree) YCD-1fruits/plant/yr 60-70	Treatment for Cancer, Osteoarthritis and Other Diseases. The pomegranate has been used in natural and holistic medicine to treat sore throats, coughs, urinary infections, digestive disorders, skin disorders, arthritis, and to expel tapeworms.	
Ziziphus mauritiana Lam. (Ber) Family- Rhamnaceae Maturity period-	Proteins \& amino acids, flavonoids, alkaloids, glycosides, terpenoides, saponins, fibers, tannins and phenolic compounds. (Seed)	Thar Sevika, Thar Bhubharaj, Goma Kirti and Thar Malti (Source: Bikaner, Rajasthan) ICAR-CIAH, Goma Keerthi (Source: ICARII:HR, Bengaluru)	Thar Sevika -30-32 $\mathrm{kg} /$ tree. Thar Bhubharaj- Thar Malti- 30-36 kg/tree Thar Malti- 65-70 kg/ tree Goma Keerthi- 35.6 kg/ tree	Eye diseases, leukorrhea, as an astringent tonic to the heart and brain. The seeds also help to relieve thirst, and have a sedative and hypnotic effect, which is helpful in insomnia, pain, physical weakness, and rheumatic symptomology.	

IMPORTANT HERBS AS UNDERSTORY

Botanical Name \& Common name, Family/ Maturity Period	Active ingredients/ Parts used	Varieties available/source	Gross production /income	Medicinal Uses	Photographs
Andrographis paniculata Burm.f. (Kalmegh/Bhuineem) Family- Acanthaceae Maturity periodWithin one year	Andrographolide (Whole Plant)	CIM-Megha (Source: CSIR-CIMAP Lucknow Uttar Pradesh)	CIM-Megha-2.5-3.0 t ha. of dried herb Net Income45,000/ha (from 3 $3^{\text {rd }}$ month) (Bahl et al., 2018)	Fever, weakness, gastric problems.	
Aloe vera Miller (Grit-kumari) Family- Liliaceae Maturity period$2^{\text {nd }}-5^{\text {th }} \mathrm{yr}$	Aloin (Leaves)	CIM-Sheetal (Source: CSIR-CIMAP Lucknow, Uttar Pradesh) IC11127 IC111269 IC111280 IC111273 (Source-NBPGR, ICAR, Delhi)		Laxative, Wound Healing, \& Skin burns	
Acorus calamus L. (Buch) Family- Acoraceae Maturity period- Within one year	β-asaron, Flavonoid, monoterpene, quinone, sesquiterpene, and phenylpropanoid (Root)	Jor Lab AC-1 (Source: CSIR- NEIST Jorhat, Assam and Lal et al., 2019)	Rs -36602.5/ha /yr 50-70 gram/plant	Depression, Mental ailments, As an insecticide, aediatric, cough and colicky problems.	

Cymbopogon flexuosus Nees ex Steud. W. Watson (Cochin grass, EastIndian lemon grass) Family- Poaceae Maturity periodafter 4 to 6 months	Myrcene, limonene, citral, geraniol, citronellol, geranyl acetate, neral, nerol, terpenes, alcohols, ketones, aldehyde and esters. (leaves)	Cim -Pragti, Nima, Chirharit, Krishna, CIM-Swarna and CIM -Shikhar, which gives more herb and oil yield. (Source: CSIR-CIMAP Lucknow, Uttar Pradesh)	Krishna- $\quad 230-250 \mathrm{~kg}$ oil/ha. Nima- $25-260 \mathrm{~kg} / \mathrm{ha}$ Essential oil CIM-Shikhar- More $280 \mathrm{~kg} / \mathrm{ha}$. Oil yield Net profit of about Rs 60,000 and 1,00,000/ha/yr depend on irrigation (Bahl et al., 2018)	Antispasmodic, Hypotensive, Anticonvulsant, Analgesic, Antiemetic, Antitussive, Antirheumatic, Antiseptic and treatment for Nervous and Gastrointestinal disorders and Fevers.	
Cymbopogon martini Roxb. Wats. (Palmarosa) Family-Poaceae Maturity periodafter 4 to 6 months	Motia (palmarosa oil), Mentha x piperita (peppermint) and Eugenia caryophyllus (clove). (Flower)	PRC-I, Trishna, Tripta, Vaishnavi, CIM-Harsh. (Source: CSIR-CIMAP Lucknow, Uttar Pradesh)	PRC-I- 125-150 kg oil/ha. Net Return- 60,0001,00,000/ha/yr CIM-Harsh- 175-200 $\mathrm{kg} / \mathrm{ha}$. (Bahl et al., 2018)	Aromatherapy as a skin tonic due to its antimicrobial properties. It has also used in Ayurvedic medicine for skin problems and to relieve nerve pain.	
Cymbopogon winterianus Jowitt ex Bor. (Java citronella) Family-Poaceae Maturity periodAfter 4 months	Citronellol, citronellal, and geraniol. (leaves)	Manjusha, Mandakini, Bio13, Jalpallavi and CIM. (Source: CSIR-CIMAP Lucknow Uttar Pradesh)	20-30 t/ha/year (Spacing of 60×45 cm) Citronellal (Manjusha)	Anti-Inflammatory, Antinociceptive, and central Nervous system (CNS) disorders.	

Curcuma longa L . (Turmeric) Family- Zingiberaceae Maturity period- 7-9 months after planting	Three curcuminoids; curcumin (diferuloylmethan e, the primary constituent responsible for yellow color of turmeric)	Suvarna, Suguna, Sudarsana, SR Prabha, SR Prathibha., Co1, BSR-1, Krishna, Sugandham, Roma, Suroma, Ranga, Rasmi, Rajendra, Sonia, SR Kedaram, Sobha, Sona, Varna, Kanthi. (Source: Department of spices and plantation crops, faculty of horticulture Tamil Nadu Agriculture university, Coimbatore, Tamil Nadu) CIM-Pitamber (source-CSIR-CIMAP)	CIM-Pitamber- 60-65 tonnes fresh rhizomes/ha Net profit $1.25-1.50$ lakhs/ha (Bahl et al., 2018)	A cough, diabetes, dermatological conditions, respiratory problems, cardiovascular and hepatobiliary diseases, arthritis, irritable bowel disease (IBS), peptic ulcers, psoriasis, and atherosclerosis.	
Desmodium gangeticum L. DC. (Salparni) Family- Fabaceae Maturity period- six to seven months	Gallic, protocatechuic, salicylic, chlorogenic, caffeic acids, rutin, quercetin and kaempferol in both parts of plant. (Root, whole plant)		The total herb yield per hectare is estimated to be $50-55$ quintals dry weight, while the dry weight yield of roots is estimated to be 11-15 quintals/hectare.	Febrifuge, aphrodisiac, analgesic, diuretic, antinflammatory, and haemorrhagic properties. It is used in postnatal complaints, diarrhoea, chronic fever, biliousness, cough, vomiting, and asthma. It is an important ingredient of dasmoolarishta and chyavanprash.	
Embelia ribes Burm.f. (Vidanga) Family- Primulaceae Maturity period- After 5-6 months	Embelin; quercitol, fatty ingredients and alkaloid schristembine, a resinoid, tannins (Seed)			Relieving Headache, Rhinitis, Haemorrhage, Epilepsy, Insomnia.	

Ocimum sanctumLinn. (Tulsi) Family Lamiaceae Maturity period 3 months	Oleanolic acid, rosmarinic acid, ursolic acid eugenol, linalool, carvacrol (Leaves/Seed)	CIM-Ayu, CIM- Angna. (Source: CSIR-CIMAP Lucknow, Uttar Pradesh)	CIM-Ayu- 16 q/ha. dry leaf yield or $110 \mathrm{~kg} / \mathrm{ha}$. Oil CIM- Angna-14 q/ha. or $90 \mathrm{~kg} / \mathrm{ha}$ essential oil (Bahl et al., 2018)	Cough, Cold, Bronchitis, used as expectorant.	
Ocimum basilicumL. (Indian basil Family Lamiaceae Maturity period 26-50 days	Methyl chavicolrich, linalool- rich, methyl eugenolrich, methyl cinnamate-rich, (leaves)	CIM- Saumya, CIM- Snigdha, CIM- Surabhi, CIM- Shishir, CIM- Sharda. (Source: CSIR-CIMAP Lucknow, Uttar Pradesh)	Average herb yield of basil is about 20-25 ton and oil yield are about $80-100 \mathrm{~kg}$ per hectare	Headaches, coughs, diarrhea, constipation, warts, worms, and kidney malfunctions.	
Phyllanthus Thonn. (Bhumi \quad Amla) Family Euphorbiaceae Maturity period Within one year	Phylanthin (Whole Plant)	CIM- Jivan (Source: \quad CSIR-CIMAP Lucknow, Uttar Pradesh)	Yield- $15-20 \mathrm{q} / \mathrm{ha}$ dry herb	Anemic, jaundice, Dropsy.	
Plumbago zeylanicaL. (Chitrak) Family Plumbaginaceae Maturityperiod- 10-12 months after transplanting	Plumbagin (Root)		Yield varies from 1218 quintals/hectare Dry root. The cost of cultivation approximately 8000/hectare/yr	Stubborn chronic Rheumatoid arthritis, Skin diseases and tumerous growths, chronic menstrual disorders, viral warts and chronic diseases of nervous system.	

Piper longum L. (Long peeper / Pipali) Family- Piperaceae Maturity period- After first year	Alkaloids (Fruit, Root)	Calicut, Assam and Viswam (Source: Philip et al., 2000)	Yield of dry fruits in first year is about $100-$ $150 \mathrm{~kg} / \mathrm{ha}$ and it attains up to $0.75-1.0 \mathrm{t}$ /ha in third to fourth year. The yield of dry spike during first year is around 0.5 t /ha. It increases up to 1.2 t /ha in the $3^{\text {rd }}$ year.	Appetizer, enlarged spleen, Bronchitis, cold, antidote.	
Rauvolfia serpentina L. Benth. ex Kurz (Sarpa Gandha) Family- Apocynaceae Maturity period- After 2 year	Alkaloids (Root)	CIM-Sheel \quad CSIR-CIMAP (Source: Lucknow, Uttar Pradesh)	CIM-Sheel- Average root from- $1200 \mathrm{~kg} / \mathrm{ha}$ (2 ${ }^{\text {nd }}$ year) Yield of root- 100-140 gm/plant Net return (Rs/ha)-150,000/- (Bahl et al., 2018)	Hyper tension, insomnia.	
Rosa damascena Mill. (Damask rose) Family- Rosaceae Maturity period-	Phenylethyl alcohol (78.4\%), citronellol (9.9\%), nonadecane (4.4\%) and geraniol (3.7\%) (flower)	Noorjahan, Rani Sahiba. (Source: CSIR-CIMAP Lucknow, Uttar Pradesh)	Noorjahan- 600g rose oil/ha. Valued at 3 lakh/ha. Geraniol 30%, Citronellol 24\%, Nerl-12\% and Rose oxide- 1.3%, Rani Sahiba- $40 \mathrm{q} / \mathrm{ha}$, Flower biomass Geraniol 35\% Geranyl acetate-7\% Citronellol-5\% and trans-rose oxide-10\% (Bahl et al., 2018)	Abdominal and chest pains, strengthening the heart, menstrual bleeding, digestive problems and constipation.	

Vetiveria zizanioides L. Nash. (Vetiveria, Vetiver grass) Family- Poaceae Maturity period- at 18 months	Sesquiterpenes (3sesquiterpenols (18-25 \%) and sesquiterpenones (7-8 \%). (leaves)	KS 1, Dharini (khus odour), Gulabi (rosr odour), Kesari (saffaron odour), CIMVriddhi, CIM- Khus - 15, CIM - Khus -22, CIM - Khusnolika and CIM - samraddhi, khus -40 etc. (Source: CSIR-CIMAP Lucknow, Uttar Pradesh)	KS $1-18-20 \mathrm{~kg} / \mathrm{ha}$ CIM- Vriddhi-20- $25 \mathrm{~kg} / \mathrm{ha}$ (10-12 months) Net profit-1,50,000/ha. (Bahl et al., 2018)	For relieving stress, It is also used for arthritis, stings, and burns. Vetiver is sometimes inhaled as aromatherapy for nervousness, insomnia, and joint and muscle pain.	
Withania somnifera L. Dunal (Aswagandha) Family- Solanaceae Maturity period- One year	Alkaloids (Root, leaf)	NIMITLI-101, Poshita, NIMITLI-118, Pratap, Chetak. (Source: CSIR-CIMAP Lucknow, Uttar Pradesh)	NIMITLI- 118-15 q/ha (dry root yield) NIMITLI- 101-23 q/ha (dry root yield) Expenditure per hectare $=30,000 /-$ Gross Return/ hectare $=\quad 96,000 /$ Net income per hectare $=66,000 /$ -	Restorative tonic, stress, nerves disorder, aphrodisiac.	

IMPORTANT SUGGESTED CLIMBER SPECIES

Botanical Name \& Family/ Maturity period	Active ingredients/ Parts ised	Varieties available/source	Gross production /income	Medicinal Uses	Photographs
Asparagus racemosus Willd. (Satavari) Family- Liliaceae Maturity period- After 2-3 year	Saponin glycosides (Sataverin I-IV) (Tuber, root)	CIM- Shakti, CIM- Sunehari (CSIR-CIMAP, Lucknow, Uttar Pradesh)	CIM-Shakti - 5-6 t/ha Dried root yield from a 2 year old crop. Net profit- 3,50,000 Rs/ha. CIM- Sunehari- 9 t/ha Dried root yield	Enhance lactation, general weakness, fatigue, and cough.	
Dioscorea bulbifera L. (Air potato, Air yam, Aerial yam, Bitter yam) Family- Dioscoreaceae Maturity period- After two to three years.	Flavonoids, clerodane diterpenoids, and steroidal saponins and phenolic compounds. (tubers)	Peruvalli (D. alata): Co 1, Sree Roopa, Sree Keerthi, Sree Shilpa Siruvalli (D. esculenta): Sree Latha, Sree Kala	$20-25$ t/ha in 240 days of tubers.	Piles, Dysentery, Syphilis, Ulcers, Cough, Leprosy, Diabetes, Asthma, and Cancer.	
Gymnema sylvestre R. Br. (Gurmar) Family- Asclepiadaceae Maturity period- After Four year	Gymnemic acids (Leaves)		About $1250 \mathrm{~kg} / \mathrm{ha}$. dried leaves (every three months). or 5-6 $\mathrm{kg} / \mathrm{ha}$. dried leaves/plant (after $3^{\text {rd }}$ year and about 10,000$15,000 \mathrm{~kg} / \mathrm{ha}$. of dried leaves.)	Diabetes, Hydrocele, Asthma.	

Mucuna pruriens L. DC. (Kaunch) Family- Fabaceae Maturity periodWithin 5 months	Levodopa (Seed)		Seed yield is high between 2.5 to 3.0 t /ha on large scale cultivation.	Male infertility, Nervous disorders, and also as an aphrodisiac.	
Tinospora cordifolia Thunb. Miers (Guduchi/Giloe) Family- Menispermaceae Maturity period- Within one year	Alkaloids, Diterpenoid Lactones, Glycosides, Steroids, Sesquiterpenoid, Phenolics, Aliphatic Compounds and Polysaccharides (Stem)		The plant yields about 1500 kg of fresh woody stem, reduced to 300 kg of dry weight per hectare in about two years.	Gout, Pile, general debility, fever, Jaundice.	

Chapter 4 Modern Plantations of Miyawaki Technique in the country

4.1 Miyawaki Plantation Established by ICFRE Institutes

4.1.1. Institute of Forest Productivity (IFP), Ranchi

Introduction of Miyawaki Plantation at Rajrappa OCP Mines under the CCL funded project entitled "Top soil conservation and Eco-rehabilitation of selected degraded coal mines of Central Coalfields Ltd., Jharkhand through forestry interventions".

The institute has taken up 1.74 hectare in the Rajrappa OCP Mines area. A total of 155 plots each size of 100 sqm were laid down in the given area.

- \quad Size of the plot $=100$ sqm.
- No. of Plants planted in each plot $=225$
- No. of Species of High canopy $=3$
- No. of Species of Medium canopy $=3$
- No. of Species of Shrub $=3$
- Total number of plants planted $225 \times 155=34875$ plants

The factorial design was taken with five treatments as below:

Sl. No.	Treatments	Amendments (AM)
1.	T1	Soil + Bonemeal + FYM
2.	T2	Soil + FYM + VAM tablets
3.	T3	Soil + Cocopeat + Vermicompost + Bonemeal
4.	T4	Soil + Cocopeat + Vermicompost + VAM tablets
5.	T5	Soil + Bonemeal + FYM + Cocopeat + VAM tablets

Based on the biodiversity survey carried out in the 10 km of the buffer area, the species shortlisted are as below:

Details of species selected for plantation			
SI. No.	High Canopy	Medium Canopy	Shrubs
1.	Albizia lebbeck	Bauhinia variegata	Adhatoda zeylanica
2.	Dalbergia sissoo	Cassia fistula	Ipomoea fistulosa
3.	Melia azedarach	Acacia catechu	Ricinus communis

Miyawaki Design (15 PIT X 15 PIT)

Sl. No.	Treatments	Amendments (AM)
1.	AM 1	Soil + Bonemeal + FYM
2.	AM 2	Soil + FYM + VAM tablets
3.	AM 3	Soil + Cocopeat + Vermicompost + Bonemeal
4.	AM 4	Soil + Cocopeat + Vermicompost + VAM tablets
5.	AM 5	Soil + Bonemeal + FYM + Cocopeat + VAM tablets

Plot Design

(Source: ICFRE-IFP, Ranchi)

Glimpses of The Miyawaki Plantation at IFP, Ranchi

Field Site Preparation

View of Field Plots

Plantation of trees

View of newly established Plantation

4.2. Miyawaki Plantation established in North Eastern States of India

A. Assam

i. Assam Science Society created first man-made micro-forest in Goalpara district's Lakhipur College. The plantation is based on Japanese ecologist Akira Miyawaki's model.

Environment, Forest \& Wildlife Minister Parimal Suklabaidya launched a Miyawaki method afforestation programme at Amingaon on $28^{\text {th }}$ August 2010. As part of the initiative, Guwahati Refinery planted 5,000 saplings of indigenous plants at the site with an aim to build a small forest resonating with Indian Oils theme Lungs of Guwahati City.

Guwahati Refinery carries out Akira Miyawaki method of afforestation as a mark of support to Indian Oil's commitment towards the cause of environment protection and conservation, at Amingaon in the city on $1^{\text {st }}$ January 2020. A total of 4,000 saplings of around 48 species of indigenous plants were planted near the Saraighat Lake to build 'the lungs of Guwahati city'.
ii. On the $5^{\text {th }}$ June 2021 during World Environment Day, the State Environment and Forest Department of Assam, Hie Valley Division organized an event of the plantation where the initiative of Miyawaki Method was inaugurated.

iii. Young Indians (Mi) Guwahati Chapter launched Miyawaki Forest Project in Assam on $11^{\text {th }}$ October 2021 in the premises of Assam Down Town University, Panikhaiti. This project aims to restore landscapes, aid in soil conservation and help build the natural ecosystem of the region.

B. Meghalaya

RNB Cements, one of the most modern cement makers in North East India, embarks on a new innovative initiative. In a plantation program carried out on 25.06.2013, at their plant in Barapani Industrial Area, Umiam, in Ri Bhoi district, they introduced an innovative eco-development system. Under the guidance of Dr Shantanu Kumar Dutta, Environment Engineer, Central Pollution Control Board, they planted 375 native species trees by adopting Akira Miyawaki Method of Environment Forest Plantation.

4.3. Miyawaki Plantation established in southern Indian states

4.3.1. Bengaluru:

A. Miyawaki - as mixed forest plantation (State Forest Department, Ramnagara)
 B. Miyawaki forest - natural acoustic barrier (TKM, Bididi)

Toyota Kirloskar Motor Private Limited (TKM) was the first organisation in India to introduce Miyawaki method of forestry during a mass afforestation movement on $21^{\text {st }}$ June 2009 at Bididi, where 36,000 saplings were planted involving 5600 stakeholders including employees and their family members, local community members, local regulators (CII, 2019). TKM, Bididi recorded the benefits of Miyawaki plantation viz., control of soil erosion, increasing water holding capacity, reduction of ambient temperature in premises, especially the reduction in noise of the vehicle during test drive. The gradual reduction of noise level (76.8 dB to 63.1 dB) up to 18% and only 10% noise reduction (76.8 dB to 69.0 dB) from source location to 15 m in the Miyawaki and in the non-plantation area (CII, 2019). Otherwise also, studies had focused in increasing the performance of noise barriers by adding vegetation in the form of urban forest along highways (Ow and Ghosh, 2017). In case of highways, closer ($<15 \mathrm{~m}$) the noise barrier forest, better the performance and ultimately, Miyawaki forest is one of the favorable combinations with its medium to high density vegetation thereby place the forest in optimal conditions to reduce noise pollution (Urban Forest Company, 2020).

Dense trees of mound plantation of Miyawaki method, TKM Bididi

C. Miyawaki forest - as Live / Bio-fence (BIAL, Bengaluru):

Bio-fencing, also referred to live-fencing, is one of the old concept and long-lasting alternative practice to different kinds of mechanical fencing. The structure of a biofence involves lines of bushes or trees that are planted closely spaced at field boundaries against wind, soil erosion and insect pests and diseases. They also enrich the soil, function as carbon sinks, and improve microclimatic conditions (VillanuevaLópez et al., 2016, Vadeo et al., 2018).
The basic idea behind the bio-fence at BIAL (Bangalore International Airport Limited) project office campus is to maintain temperature and reduce dust particles from the surrounding area and aesthetic urban view, apart from other micro-ecological benefits of Miyawaki plantation.

(Clockwise) Aerial (Google location) view of the Bio-fence surrounding BIAL Office, followed by field photographs of Miyawaki Plantation, BIAL, Bengalure

D. Miywaki - as an alternative for green cover in Urban Fragments (Saytrees, Bengaluru)

Small Forest Fragments or Urban green spaces (UGS) are considered as "lungs of city" and reservoirs of "carbon stock" as the vegetation in and around the urban areas sequester and store large amount of carbon (Nowak et al., 2008; Strohbach et al., 2012), thereby contribute towards mitigation of climate change impacts (Nero et al., 2017). The modern civilization created an imbalance in the environment where many natural forests have been removed or fragmented in urban and its periphery for various developmental purposes, thereby, dwindling the urban space. On the other hand, day-by-day rapid expansion of the grey infrastructure (infringing the tree protection area) becomes a threat to existence and upkeep of large trees (with vast canopy), especially in all metro cities of our country. Miyawaki forests are the best alternative for restoring green space and maintenance in urban areas.

Biodiversity Park at Manyata Tech Park (Saytrees, Bengaluru

Biodiversity Park at IRIDM (SWR), RR Nagar (Saytrees, Bengaluru)

E. Miyawaki forests in Bengaluru City - Revival of degraded land (Municipal Solid Waste Quarry area)

The top soil filling of 4 to 5 feet may be suitable for vegetation cap. Their purpose of vegetation cap is to increase evapotranspiration from the surface of the landfill and enhance bioremediation through suitable plantation. A further advantage of the alternative vegetative cap is more rapid "stabilization" of the wastes, decrease gas production gradually after 5-20 years, and earlier access to the site for alternative uses (Schnoor, 2002).

Google extract of Bellahalli quarry area (left hand side) and right hand side) Quarry after covered with soil creating a vegetation cap of 4 to 5 feet (Courtesy BMRCL)
Nevertheless, Karnataka Forest Department followed traditional planting method for reclamation of a MSW dump yard located near Hesaraghatta, Karnataka

Vegetation cap at MSW dump yard (KFD, Hesaraghatta)

4.3.2. Mumbai

Establishment of city forests using the Akira Miyawaki plantation technique is an emerging city forest plantation concept in our country. In Mumbai, this type of plantation has been established by Maharashtra State Forest Department and various NGOs in the city. The preliminary study was carried out by ICFRE-TFRI, Jabalpur (M.P.), for Miyawaki plantations established by Keshav Srushti. Keshav Srushti, a NGO based in

Thane, Maharashtra, has established Miyawaki plantations in 19 sites using Akira Miyawaki Plantation techniques. The established plantations were one month to two years of age.

Table 1: Details of Miyawaki Plantation sites

S. No.	Name of study sites	Date of Establishment	No. of Plant Planted	No. of species	Area (sq. m)
1	Keshav Srushti, UTTAN, Bhayander (west), 401 106	7-Jun-2018	2104	150	278.70
2	Ismail Yusuf college, Hardevi Society, Natwar Nagar, Jogeshvari -(East), Mumbai, 400 060	14-Aug-2019	1200	32	185.80
3	Veer Abdul Hamid Garden, Kandivali- East, Mumbai, 400 101	23-Aug-2019	1200	30	185.80
4	SRPF Ground, NH 8, Goregaon, Mumbai, Maharashtra, 400065	27-Oct-2020	1000	23	557.41
5	Posha Nakhwa BMC Garden, Versova, Andheri, Mumbai	9-Mar-2021	945	55	185.80
6	Plot No. 230, Ramdev park, Mira Road, Mumbai- 4	1-Apr-2021	1650	53	383.22
7	Sanjay Gandhi National Park, WEH, Borivali East, Mumbai	13-Nov-2020	1620	35	371.61
8	Sanjay Gandhi National Park, Site near pine forest	17-Aug-2021	1500	54	297.28

Source: Rathod D.U., Saravanan, S and Rao, G. (2022)
Based on study observed that Bauhinia spp., Terminalia spp., Ficus benghalensis, Mimusops elegi, Syzygium cumini, Pongamia pinnata species with the highest number of individuals were planted.

Microclimate condition of Miyawaki Plantation was also studied during the survey includes temperature, humidity and light condition. Based on field data observed that In terms of temperature, the difference in temperature between inside and outside the plantation ranged from $0.5^{\circ} \mathrm{C}$ to $2.4^{\circ} \mathrm{C}$ between all sites during the month of August. This difference may be more pronounced during the summer season. This microclimate difference in plantations can attract birds to shelter, especially during hot summers. The Miyawaki plantation site can be helpful in increasing the number of birds in the city area. The data on humidity indicated that the value of
increasing the number of birds in the city area. The data on humidity indicated that the value of humidity ranged between 74% and 98% inside the plantation and 66% to 98% outside the plantation. A higher value of humidity was recorded inside the plantation than outside the plantation. Due to the monsoon season, the humidity rate was higher inside the plantation and lower outside the plantation. This scenario may vary during the summer season. Plantation creates a favourable microclimate for the bird population. The data on light showed that the intensity of the light ranged between 300 lux and 1533 lux, and 1467 lux and 2000 lux on the inside and outside of the plantation, respectively. The value of light is low inside the plantation site as compared to outside the plantation. This difference in light intensity was due to the dense canopy at all plantation sites. Such low light penetration inside the plantation may lead to a plantation site free of weeds. During the survey, we observed that most sites were free from weed. It may reduce the management cost of a plantation. But proper companion species selection with the main species is required; otherwise there may be chances of lower-storey plantation failure. The light condition data will also be helpful in species selection for future successful establishment of plantations and reducing the species mortality rate through an appropriate selection of species based on light requirements.

3 years and 2 months old plantation at Keshav Srushti Uttan

2 Years old Miywaki Plantation in the Public Garden

10 Months old Miywaki Plantation at SRPF Ground, NH 8, Goregaon, Mumbai

2 week old Miywaki Plantation at Sanjay Gandhi National Park

5 Months old Miywaki Plantation at Posha Nakhwa BMC Garden, Andheri, Mumbai

Miywaki Plantation at SGNP established by Maharashtra State Forest Department

List of Species for Miyawaki Plantation		
*Note: Based on field observation recorded at Mumbai in established Miyawaki Plantation by KeshavSrushti (NGO)		
Top storey (Dominant and Co-Dominant)	Middle storey (Intermediate)	Lower storey (Suppressed)
Gmelina arborea, Ceiba pentandra, Albizia spp., Melia dubia	Adenanthera pavonina, Albizia procera, Azadirachta indica Lagerstroemia spp., Putranjiva roxburgh	Syzygium cumini, Terminalia arjuna
Albizia procera, Cassia siamea, Lagerstroemia spp., Bauhinia spp., Terminalia catappa, Melia azedarach, Accacia spp., Acacia nilotica.	Cassia fistula, Cassia spp., Dalbergia sissoo, Ficus benghalensis, Senna surattensis	Mimusops elengi, Tamarindus indica, Terminalia arjuna, Wrightia tinctoria, Tamarindus indica
Melia azedarach, Gmelina arborea, Cassia siamea, Bauhinia spp., Chukrasia tabularis, Khaya senegalensis	Dalbergia sissoo, Terminalia catappa, Largestromis spp.	Syzygium cumini, Terminalia arjuna, Terminalia bellirica, Pongamia pinnata
Gmelina arborea, Ceiba pentandra, Neolamarckia cadamba, Vitex negundo, Melia azedarach, Bauhinia spp., Alstonia scholaris	Cassia fistula, Dalbergia latifolia, Azadirachta indica, Bombex ceiba, Morus alba	Terminalia arjuna, \quad T. bellirica, Pongamia pinnata, Phyllanthus \quad emblica, Alstonia scholaris, Ficus spp. D. latifolia, Sterculia foetida, Adhatoda vasica, Cordia dichotoma
Gmelina arborea, Melia azedarach, Ceiba pentandra, Delonix regia	Terminalia catappa, Combretum indicum, Lagerstroemia spp., scholstonia scholis, Casuarina equisetifolia, Ar	Terminaliarrana Polyalthiariana, Swietenia mahagoni
Bauhinia spp., Pterospermum acerifolium, Largestroemia spp., Cassia fistula, Cassia siamea, Swietenia mahagoni, A. cadamba, Caesalpinia pulcherrima, C. siamea	A. pavonina, A. marmelos, Ficus benghalensis, Trema orientalis, Terminalia catappa, Saraca asoca, Mitragyna parvifolia, Millingtonia hortensis, Holoptelea integrifolia	Butea monosperma, Bridelia retusa, Dalbergia sissoo, Terminalia bellirica, Sapindus mukorossi, Dalbergia latifolia, Erythrina spp., Acacia spp.
(Source: Rathod D.U., Saravanan, S and Rao, G. (2022))		

References

Champion, H. G. and Seth, S. K. (1968). A revised survey of the forest types of India. Manager of publications.

CII (2019). Investing in Biodiversity for Building Resilient Business - Case Studies from Indian Industry, IBBI Publication, CII-ITC Centre of Excellence for Sustainable Development.

Clara, M. (2020). The Miyawaki method - Data \& concepts, Urban Forest Company (Urban-Forests-report-The-Miyawaki-method---Data-concepts.pdf).

Evans, J. (1992). Plantation forestry in the tropic. $2^{\text {nd }}$ Edition, Oxford University Press. Pg. 173.
Fischer, H. S., Winter, S., Lohberger, E., Jehl, H. and Fischer, A. (2013). Improving transboundary maps of potential natural vegetation using statistical modeling based on environmental predictors. Folia Geobotanica, 48(2), 115-135.

FSI (2019) India state of forest report, Forest Survey of India (MoEF \& CC), Dehradun (Uttarakhand). Retrieval link: https://fsi.nic.in/isfr-volume-ii?pgID=isfr-volume-ii

FSI (2021) India state of forest report, Forest Survey of India (MoEF \& CC), Dehradun (Uttarakhand). Retrieval link: https://fsi.nic.in/isfr-2021/acknowledgement-executivesummary.pdf

Hengl, T., Walsh, M. G., Sanderman, J., Wheeler, I., Harrison, S. P. and Prentice, I. C. (2018). Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. Peer Journal, 6, e5457.

Kiran, G., Sandhya and Kinnary, S. (2011). "Carbon sequestration by urban trees on roadside of Vadodara city." International Journal of Engineering Science and Technology (IJEST), 3(4): 3066-3070

Miyawaki. A. (1993 ${ }^{\text {a }}$) Restoration of native forest from Japan to Malaysia. In: Lieth H, Lohmann M (eds) Restoration of tropical forest ecosystems. Kluwer Academic, Dordrecht, pp 5-24.

Miyawaki, A. (1999) Creative ecology: restoration of native forests by native trees. Plant Biotechnol 16(1):15-25.

MoHUF, (2021). Ministry of Housing and Urban Affairs, Govt. of India. Retrieval link: http://mohua.gov.in/cms/urbangrowth.php\#::~:text=Growth\ rate\ of\ population\%2 0in,to\%2053\%20in\%20Census\%202011.

Nero, B, Callo-Concha, D., Anning, A. and Denich, M. (2017). Urban Green Spaces Enhance Climate Change Mitigation in Cities of the Global South: The Case of Kumasi, Ghana. Procedia Engineering, 198, 69-83.

Nowak, D.J., Crane, D.E., Stevens, J.C., Hoehn, R.E., Walton JT and Bond JA. (2008). GroundBased Method of Assessing Urban Forest Structure and Ecosystem Services. Arboriculture \& Urban Forestry, 34, 347-358.

Ow L.F. and Gosh S. (2017). Urban cities and road traffic noise: Reduction through vegetation. Applied Acoustics. 120, 15-20. https://doi.org/10.1016/j.apacoust.2017.01.007

Rathod D.U., Saravanan, S. and Rao, G. (2022). Survey Report on Miyawaki Plantations, TFRI (ICFRE) Jabalpur (M.P.). Pg 1-72.

Schnoor, J.L. (2002). Phytoremediation of soil and groundwater. Technology Evaluation Report-TE-02-01. Ground-Water Remediation Technologies Analysis Center.

Strohbach, M.W. and Hawse D. (2012). Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landscape and Urban Planning, 104, 95104.

Tüxen, R. (1956). Die heutige potentielle natürliche Vegetation ass Gegenstand der Vegetationskartierung. Angew Pflanzensoziol (Stolzenau) 13:5-42

Vadeo, A.D., Hiese, N. and Hiese Z. (2018). Study on traditional method of rearing Mithun (Bor frontalis) and application of bio-fencing in Mithun ranges at Porba, Phek District, Nagaland. Research Journal of Chemical and Environmental Sciences, 6, 54-58.

Villanueva-Lopez G., Casanova-Lugo F., Martinez-Zurimendi P, Parsons, D. and Aguilar-Solis L.A. (2016). Effect of live fences of Gliricidia sepium on CO_{2} fluxes in tropical livestock systems. Soil Use Management, 32, 553-564. doi: 10.1111/sum.12311.

Photo Credits

S. No.	Details of Photographs	Credits	Source of Information
1.	Marking	Mission Miyawaki Group: SRPF-GR16, Bhachau, Gujarat	Retrieval link: https://www.facebook.com/photo?fbid=32763 $5355643289 \&$ set $=$ pcb. 327635755643249
2.	Staking	Mission Miyawaki Group: Police Shahid Smruti Van (SRPF 19) at village Chopadva, Gujarat.	Retrieval link: https://www.facebook.com/photo?fbid=37644 $\underline{5474095610 \& s e t=\text { pcb. } 376445887428902}$
3.	Preparation of PitPicture 1	Mission Miyawaki Group: Police SRPF Group, Bhachau, Gujarat	Retrieval link: https://www.facebook.com/photo?fbid=47583 $7884565131 \&$ set $=$ pcb. 475838121231774
4.	Preparation of Pit - Picture-2	Mission Miyawaki Group: Namo Van (Bhachau Nagarpalika, Gujarat)	Retrieval link: https://www.facebook.com/photo/?fbid=4036 81961371961\&set=pcb. 403682294705261
5.	Preparation of Pit Picture-3	Mission Miyawaki Group: SRPF 13 at Rajkot, Gujarat	Retrieval link: https://www.facebook.com/photo?fbid=66733 3908748860\&set=pcb. 667099198772331
6.	Steps of PlantingPicture 1	Mission Miyawaki Group: SRPF Group, Bhachau	Retrieval link: https://www.facebook.com/photo?fbid=475 837927898460 \&set $=$ pcb. 475838121231774
7.	Step of PlantingPicture 2	Mission Miyawaki Group: SRPF 13 at Rajkot, Gujarat	$\underline{\mathbf{h t t p s :} / / \text { www.facebook.com/photo?fbid=667 }}$
8.	Flood irrigation	Mission Miyawaki Group: Bhachau, Gujarat	Retrieval link: https://www.facebook.com/photo/?fbid=117 673196639507\&set=pcb. 117673256639501
9.	Barbed wire fincing with Cemented Poles	Mission Miyawaki Group: Rajkot Rural Police Headquarters, Gujarat	Retrieval link: https://www.facebook.com/10135323827150 3/photos/pb. 100064167698977 .- 2207520000./104961261244034/?type=3
10.	Glimpses of the Miyawaki Plantation at IFP, Ranchi	ICFRE, IFP, Ranchi	----
11.	Miyawaki Plantation established in North Eastern States of India	ICFRE, RFRI, Jorhat	Report on plantation based on Miyawaki Technique of Japan in north-eastern states
12.	All Picture of Miyawaki plantation in Bengaluru	IWST Bangalore	Report / Technical Survey of Our Various City Forests Developed in And Around Bengaluru, Using Akira Miyawaki Technique

